Accurate Core-Excited States via Inclusion of Core Triple Excitations in Similarity-Transformed Equation-of-Motion Theory
The phenomenon of orbital relaxation upon excitation of core electrons is a major problem in the linear-response treatment of core-hole spectroscopies. Rather than addressing relaxation through direct dynamical correlation of the excited state via equation-of-motion coupled cluster theory (EOMEE-CC)...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-06, Vol.18 (6), p.3759-3765 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phenomenon of orbital relaxation upon excitation of core electrons is a major problem in the linear-response treatment of core-hole spectroscopies. Rather than addressing relaxation through direct dynamical correlation of the excited state via equation-of-motion coupled cluster theory (EOMEE-CC), we extend the alternative similarity-transformed equation-of-motion coupled cluster theory (STEOMEE-CC) by including the core–valence separation (CVS) and correlation of triple excitations only within the calculation of core ionization energies. This new method, CVS-STEOMEE-CCSD+cT, significantly improves on CVS-EOMEE-CCSD and unmodified CVS-STEOMEE-CCSD when compared to full CVS-EOM-CCSDT for K-edge core-excitation energies of a set of small molecules. The improvement in both absolute and relative (shifted) peak positions is nearly as good as that for transition-potential coupled cluster (TP-CC), which includes an explicit treatment of orbital relaxation, and CVS-EOMEE-CCSD*, which includes a perturbative treatment of triple excitations. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.2c00268 |