Preparation, Characterization, and Antimicrobial and Antiviral Properties of Silver-Containing Nanocomposites Based on Polylactic Acid–Chitosan
Antimicrobial and antiviral nanocomposites based on polylactic acid (PLA) and chitosan were synthesized by a thermochemical reduction method of Ag+ ions in the PLA-Ag+-chitosan polymer films. Features of the structural, morphological, thermophysical, antimicrobial, antiviral, and cytotoxic propertie...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2022-06, Vol.5 (6), p.2576-2585 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antimicrobial and antiviral nanocomposites based on polylactic acid (PLA) and chitosan were synthesized by a thermochemical reduction method of Ag+ ions in the PLA-Ag+-chitosan polymer films. Features of the structural, morphological, thermophysical, antimicrobial, antiviral, and cytotoxic properties of PLA-Ag-chitosan nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and antiviral, antimicrobial, and cytotoxic studies. The effects of temperature and the duration of reduction of Ag+ ions on the structure of PLA-Ag-chitosan nanocomposites were established. During the thermochemical reduction (T = 160 °C, t = 5 min) of silver palmitate ions in PLA-Ag+-chitosan polymer films, Ag nanoparticles with an average size of 4.2 nm were formed. PLA-Ag-chitosan polymer nanocomposites have strong antimicrobial activity against S. aureus and E. coli strains. In particular, for PLA-chitosan samples containing 4% Ag, the diameters of the S. aureus and E. coli growth inhibition zones were 25.8 and 25.0 mm, respectively. The antiviral activity of the nanocomposites against influenza A virus, herpes simplex virus type 1, and adenovirus serotype 2 was also revealed. The PLA-4%Ag-chitosan nanocomposites completely inhibited the cytopathic effect (CPE) of herpes virus type 1 by 5.12 log10TCID50/mL (high antiviral activity) and the development of the CPE of influenza virus and adenovirus by 0.60 and 1.07 log10TCID50/mL (relative antiviral activity). The obtained nanocomposites were not cytotoxic; they did not inhibit the viability of MDCK, BHK-21, and Hep-2 cell cultures. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.2c00034 |