Disk-shaped cellulose fibers from red algae, Eucheuma cottonii and its use for high oxygen barrier

We could prepare disk-shaped fibers without particular mechanical treatments from Eucheuma cottonii, the commonly used red algae for obtaining carrageenan. After carrageenan extraction from cottonii, the residues were bleached using chlorine dioxide and hydrogen peroxide. The morphology of the bleac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2022-06, Vol.210, p.752-758
Hauptverfasser: Han, Jung Soo, Kim, Sang Yun, Seo, Yung Bum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We could prepare disk-shaped fibers without particular mechanical treatments from Eucheuma cottonii, the commonly used red algae for obtaining carrageenan. After carrageenan extraction from cottonii, the residues were bleached using chlorine dioxide and hydrogen peroxide. The morphology of the bleached fiber was disk-shaped one with a very thin fiber wall thickness of less than 100 nm and a diameter of approximately 100 μm. The sugar analysis and X-ray diffraction of the bleached fibers showed that they consisted of mostly glucose and had the same pattern as cellulose I with more than 50% crystalline structure, respectively. Compared to one-dimensional cellulose micro- or nanofibrils, which exhibits slow drainage and possess intolerably high drying energy, these two-dimensional disk-shaped fibers, when formed a layer in water medium, exhibit fast drainage and low drying energy. The formed sheet resulted in excellent transparency and high oxygen barrier property. Therefore, by using these disk-shaped, thin fibers from cottonii, we expect that the biodegradable and transparent oxygen barrier layer can be produced at a paper machine, which is, if possible, extremely difficult in the case of cellulose micro- or nanofibrils due to their slow drainage and high drying energy.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.04.232