Neurologic and neurodevelopmental complications in cardiofaciocutaneous syndrome are associated with genotype: A multinational cohort study

Dysregulation of RAS or its major effector pathway is the molecular mechanism of RASopathies, a group of multisystemic congenital disorders. Neurologic complications are especially challenging in the management of the rare RASopathy cardiofaciocutaneous (CFC) syndrome. This study evaluated clinical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics in medicine 2022-07, Vol.24 (7), p.1556-1566
Hauptverfasser: Pierpont, Elizabeth I., Kenney-Jung, Daniel L., Shanley, Ryan, Zatkalik, Abigail L., Whitmarsh, Ashley E., Kroening, Samuel J., Roberts, Amy E., Zenker, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dysregulation of RAS or its major effector pathway is the molecular mechanism of RASopathies, a group of multisystemic congenital disorders. Neurologic complications are especially challenging in the management of the rare RASopathy cardiofaciocutaneous (CFC) syndrome. This study evaluated clinical neurologic and neurodevelopmental features and their associations with CFC syndrome gene variants. A multinational cohort of 138 individuals with CFC syndrome (BRAF = 90, MAP2K1 = 36, MAP2K2 = 10, KRAS = 2) was recruited. Neurologic presentation was captured via clinician review of medical records and caregiver-completed electronic surveys. Validated measures of seizure severity, adaptive function, and gross motor function were obtained. The overall frequency of intellectual disability and seizures was 82% and 55%, respectively. The frequency and severity of seizures was higher among individuals with BRAF or MAP2K1 variants than in those with MAP2K2 variants. A disproportionate incidence of severe, treatment-resistant seizures was observed in patients with variants in the catalytic protein kinase domain of BRAF and at the common p.Y130 site of MAP2K1. Neurodevelopmental outcomes were associated with genotype as well as seizure severity. Molecular genetic testing can aid in prediction of epilepsy and neurodevelopmental phenotypes in CFC syndrome. Study results identified potential CFC syndrome-associated variants in the development of relevant animal models for neurologic, neurocognitive, and motor function impairment.
ISSN:1098-3600
1530-0366
DOI:10.1016/j.gim.2022.04.004