Variational Principle for Optimal Quantum Controls in Quantum Metrology

We develop a variational principle to determine the quantum controls and initial state that optimizes the quantum Fisher information, the quantity characterizing the precision in quantum metrology. When the set of available controls is limited, the exact optimal initial state and the optimal control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-04, Vol.128 (16), p.160505-160505, Article 160505
Hauptverfasser: Yang, Jing, Pang, Shengshi, Chen, Zekai, Jordan, Andrew N, Del Campo, Adolfo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a variational principle to determine the quantum controls and initial state that optimizes the quantum Fisher information, the quantity characterizing the precision in quantum metrology. When the set of available controls is limited, the exact optimal initial state and the optimal controls are, in general, dependent on the probe time, a feature missing in the unrestricted case. Yet, for time-independent Hamiltonians with restricted controls, the problem can be approximately reduced to the unconstrained case via Floquet engineering. In particular, we find for magnetometry with a time-independent spin chain containing three-body interactions, even when the controls are restricted to one- and two-body interaction, that the Heisenberg scaling can still be approximately achieved. Our results open the door to investigate quantum metrology under a limited set of available controls, of relevance to many-body quantum metrology in realistic scenarios.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.128.160505