Swine diets: Impact of carbohydrate sources on manure characteristics and gas emissions

Swine growers seeking to lower costs and environmental impact have turned to alternative carbohydrate feed sources. A feeding trial was conducted to determine the effect carbohydrate sources have on manure composition and gas emissions. A total of 48 gilts averaging 138 kg BW were fed diets consisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-06, Vol.825, p.153911-153911, Article 153911
Hauptverfasser: Trabue, S.L., Kerr, B.J., Scoggin, K.D., Andersen, D.S., van Weelden, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Swine growers seeking to lower costs and environmental impact have turned to alternative carbohydrate feed sources. A feeding trial was conducted to determine the effect carbohydrate sources have on manure composition and gas emissions. A total of 48 gilts averaging 138 kg BW were fed diets consisting of (a) low fiber (LF) grain, or (b) high fiber (HF) aro-industrial co-product (AICP). The LF diets included corn and soybean meal (CSBM) and barley soybean meal (BSBM). The HF AICP diets were CSBM based and supplemented with one of the following materials: beet pulp; corn distillers dried grains with solubles; soybean hulls; or wheat bran. Diets were fed for 42 d with an average daily feed intake of 2.71 kg d−1. Feces and urine were collected twice daily and added to manure storage containers in which manure slurries were monitored for gas emissions and chemical properties. Manures of animals fed HF diets had significantly (P < 0.05) more excretion of solids, C, N, and organic N, but less total S compared to pigs fed the LF diets. Animals feed HF diets had significantly (P < 0.05) higher levels of ammonia, sulfide, volatile fatty acids, and phenols in manure compared to pigs fed the LF diets. Manure of animals fed HF diets had 30% (P < 0.05) lower NH3 and 17% lower hydrogen sulfide emissions; however, fiber had no impact on odor emissions. Based on the partitioning of nutrients, animals fed HF fiber diets had increased manure retention for C and N but decreased levels of N gas emissions and manure S. There were little differences in manure and gas emissions for animals fed LF diets, but the source of HF AICP diets had a significant impact on manure composition and gas emissions. [Display omitted] •Dietary fiber affected manure solids, total C, and total N, and total S.•Dietary fiber increased manure odorants.•Dietary fiber reduced ammonia emissions by over 30%.•Dietary carbohydrate source impacted hydrogen sulfide emissions•Dietary fiber had no effect on emissions of odorants from manure.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.153911