The first detection of organophosphate esters (OPEs) of a high altitude fresh snowfall in the northeastern Tibetan Plateau

Due to the gradual phase-out of brominated flame retardants, the consumption of organophosphate esters (OPEs) as suitable alternatives has increased in recent years. These compounds could be trapped and accumulate in the widely developed glaciers such as Laohugou Glacier No. 12 in the Tibetan Platea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-09, Vol.838 (Pt 1), p.155615-155615, Article 155615
Hauptverfasser: Zou, Xiang, Hou, Shugui, Wu, Shuangye, Liu, Ke, Huang, Renhui, Zhang, Wangbin, Yu, Jinhai, Zhan, Zhaojun, Pang, Hongxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the gradual phase-out of brominated flame retardants, the consumption of organophosphate esters (OPEs) as suitable alternatives has increased in recent years. These compounds could be trapped and accumulate in the widely developed glaciers such as Laohugou Glacier No. 12 in the Tibetan Plateau (TP), as snow is an effective scavenger of organic pollutants in the atmosphere. However, large gaps in knowledge still exist regarding the occurrence, distribution, and source analysis of OPEs in TP glaciers. In this study, eight surface snow samples collected at different altitudes on Laohugou Glacier No. 12 on the northeastern edge of the TP in order to investigate sources and distribution of OPEs. The results showed that the concentrations of ∑7OPEs varied from 54.53 ng/L to 169.15 ng/L, with a mean of 99.84 ng/L. ∑Chlorinated-OPEs (Cl-OPEs) were dominant in these samples, accounting for 83% of the total OPE concentrations. ∑OPEs concentration increases with altitude on Laohugou Glacier No. 12, implying an altitudinal magnification effect on OPEs deposition. Principal component analysis suggests that OPEs primarily originated from traffic emissions and their variations were largely driven by dust transport. Analyses of backward trajectories of air masses and the wind field indicate that these OPEs might have come from urban emissions northwest of Laohugou Glacier No. 12. This study provides the first valuable insight into the environmental behavior of OPEs in Tibetan glaciers. [Display omitted] •The first assessment of OPEs in the glacier of Tibetan Plateau.•Chlorinated OPEs are dominant in Laohugou Glacier No. 12.•The deposition of OPEs is affected by altitude magnification.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.155615