Systems Metabolic Engineering of Escherichia coli Coculture for De Novo Production of Genistein
Genistein is a plant-derived isoflavone possessing various bioactivities to prevent aging, carcinogenesis, and neurodegenerative and inflammation diseases. As a typical complex flavonoid, its microbial production from sugar remains to be completed. Here, we use systems metabolic engineering stategie...
Gespeichert in:
Veröffentlicht in: | ACS synthetic biology 2022-05, Vol.11 (5), p.1746-1757 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genistein is a plant-derived isoflavone possessing various bioactivities to prevent aging, carcinogenesis, and neurodegenerative and inflammation diseases. As a typical complex flavonoid, its microbial production from sugar remains to be completed. Here, we use systems metabolic engineering stategies to design and develop a three-strain commensalistic Escherichia coli coculture that for the first time realized the de novo production of genistein. First, we reconstituted the naringenin module by screening and incorporating chalcone isomerase-like protein, an auxiliary component to rectify the chalcone synthase promiscuity. Furthermore, we devised and constructed the genistein module by N-terminal modifications of plant P450 enzyme 2-hydroxyisoflavanone synthase and cytochrome P450 enzyme reductase. When naringenin-producing strain was cocultivated with p-coumaric acid-overproducing strain (a phenylalanine-auxotroph), two-strain coculture worked as commensalism through a unidirectional nutrient flow, which favored the efficient production of naringenin with a titer of 206.5 mg/L from glucose. A three-strain commensalistic coculture was subsequently engineered, which produced the highest titer to date of 60.8 mg/L genistein from a glucose and glycerol mixture. The commensalistic coculture is a flexible and versatile platform for the production of flavonoids, indicating a promising future for production of complex natural products in engineered E. coli. |
---|---|
ISSN: | 2161-5063 2161-5063 |
DOI: | 10.1021/acssynbio.1c00590 |