Experimental study on fabrication, biocompatibility and mechanical characterization of polyhydroxybutyrate-ball clay bionanocomposites for bone tissue engineering
The poly (3-hydroxybutyrate) (PHB)/ball clay nanocomposites (B1-B10) were synthesized using solvent casting method with different weight percentage of ball clay in PHB matrix. Scanning electron microscope (SEM) showed maximum root mean square roughness (188.73 μm) for 10% ball clay loading. Fourier...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-06, Vol.209 (Pt B), p.1995-2008 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The poly (3-hydroxybutyrate) (PHB)/ball clay nanocomposites (B1-B10) were synthesized using solvent casting method with different weight percentage of ball clay in PHB matrix. Scanning electron microscope (SEM) showed maximum root mean square roughness (188.73 μm) for 10% ball clay loading. Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) showed establishment of intercalated structure and formation of hydrogen bond between ball clay and PHB matrix. Contact angle values (67.3 - 51.3°) exhibited that the nanocomposites (B1-B10) are more hydrophilic than neat PHB (70.30°). Thermogravimetric (TGA) and differential scanning calorimetry (DSC) revealed maximum Tmax (278 °C) and Tm (175 °C) for the nanocomposite B10 (PHB/PEG/ball clay: 80%/10%/10%). Maximum tensile strength (38.21 ± 0.15 MPa) and Young’s modulus (1.74 ± 0.016 GPa) was observed for B10 nanocomposite. The values of protein adsorption, platelet adhesion, PT, APTT and complement activation for B10 nanocomposites were 165 ± 2 μg/cm2, 72 ± 3 × 109 platelets/cm2, 23 ± 1 s, 44 ± 2 s, 102 ± 2 mg/dL and 631 ± 3 mg/dL, respectively. Hydroxyapatite formation was also observed for nanocomposite (B10) in in vitro simulated body fluid (SBF) study. Finally, the nanocomposite (B10) showed no harmful effect on MG-63 cells, indicating that they are physiologically safe.
•Poly (3-hydroxybutyrate)/ ball clay (natural clay) nanocomposite was fabricated.•Nanocomposite showed excellent mechanical, thermal and biological properties.•Nanocomposite showed no cytotoxic effect on MG-63 cells evaluated by MTT assay. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.04.178 |