Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria
The complex gastrointestinal environment and the intestinal epithelial barrier constrain the design and effectiveness of orally administered tumour vaccines. Here we show that outer membrane vesicles (OMVs) fused to a tumour antigen and produced in the intestine by ingested genetically engineered ba...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2022-07, Vol.6 (7), p.898-909 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complex gastrointestinal environment and the intestinal epithelial barrier constrain the design and effectiveness of orally administered tumour vaccines. Here we show that outer membrane vesicles (OMVs) fused to a tumour antigen and produced in the intestine by ingested genetically engineered bacteria function as effective tumour vaccines in mice. We modified
Escherichia coli
to express, under the control of a promoter induced by the monosaccharide arabinose, a specific tumour antigen fused with the protein cytolysin A on the surface of OMVs released by the commensal bacteria. In mice, oral administration of arabinose and the genetically engineered
E. coli
led to the production of OMVs that crossed the intestinal epithelium into the lamina propria, where they stimulated dendritic cell maturation. In a mouse model of pulmonary metastatic melanoma and in mice bearing subcutaneous colon tumours, the antigen-bearing OMVs inhibited tumour growth and protected the animals against tumour re-challenge. The in situ production of OMVs by genetically modified commensal bacteria for the delivery of stimulatory molecules could be leveraged for the development of other oral vaccines and therapeutics.
Tumour vaccines consisting of outer membrane vesicles bearing a specific tumour antigen and produced in the intestine by ingested genetically engineered bacteria generate long-term antitumour immunity in mice. |
---|---|
ISSN: | 2157-846X 2157-846X |
DOI: | 10.1038/s41551-022-00886-2 |