Immunohistological study of the density and distribution of human penile neural tissue: gradient hypothesis

Immunohistological patterns of density and distribution of neural tissue in the human penis, including the prepuce, are not fully characterized, and effects of circumcision (partial or total removal of the penile prepuce) on penile sexual sensation are controversial. This study analyzed extra- and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impotence research 2023-05, Vol.35 (3), p.286-305
Hauptverfasser: Cepeda-Emiliani, Alfonso, Gándara-Cortés, Marina, Otero-Alén, María, García, Heidy, Suárez-Quintanilla, Juan, García-Caballero, Tomás, Gallego, Rosalía, García-Caballero, Lucía
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Immunohistological patterns of density and distribution of neural tissue in the human penis, including the prepuce, are not fully characterized, and effects of circumcision (partial or total removal of the penile prepuce) on penile sexual sensation are controversial. This study analyzed extra- and intracavernosal innervation patterns on the main penile axes using formalin-fixed, paraffin-embedded human adult and fetal penile tissues, single- and double-staining immunohistochemistry and a variety of neural and non-neural markers, with a special emphasis on the prepuce and potential sexual effects of circumcision. Immunohistochemical profiles of neural structures were determined and the most detailed immunohistological characterizations to date of preputial nerve supply are provided. The penile prepuce has a highly organized, dense, afferent innervation pattern that is manifest early in fetal development. Autonomically, it receives noradrenergic sympathetic and nitrergic parasympathetic innervation. Cholinergic nerves are also present. We observed cutaneous and subcutaneous neural density distribution biases across our specimens towards the ventral prepuce, including a region corresponding in the adult anatomical position (penis erect) to the distal third of the ventral penile aspect. We also describe a concept of innervation gradients across the longitudinal and transverse penile axes. Results are discussed in relation to the specialized literature. An argument is made that neuroanatomic substrates underlying unusual permanent penile sensory disturbances post-circumcision are related to heightened neural levels in the distal third of the ventral penile aspect, which could potentially be compromised by deep incisions during circumcision.
ISSN:0955-9930
1476-5489
DOI:10.1038/s41443-022-00561-9