Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells
Small molecule fluorescent probes provide a powerful labelling technology to enhance our understanding of particular proteins. However, the discovery of a proper fluorescent probe for detecting PDE5 is still a challenge due to the highly conservative structure of the catalytic domain in the phosphod...
Gespeichert in:
Veröffentlicht in: | RSC advances 2021-10, Vol.11 (51), p.31967-31971 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small molecule fluorescent probes provide a powerful labelling technology to enhance our understanding of particular proteins. However, the discovery of a proper fluorescent probe for detecting PDE5 is still a challenge due to the highly conservative structure of the catalytic domain in the phosphodiesterase (PDE) families. Herein, we identified probes based on the key amino residues in the ligand binding pocket of PDE5 and catalytic-site-fluorescent probes
PCO2001-PCO2003
were well designed and synthesized. Among them,
PCO2003
exhibited extraordinary fluorescence properties and the ability to be applied to PDE5 visualization in live cells as well as in pulmonary tissue slices, demonstrating the location and expression level of PDE5 proteins. Overall, the environment-sensitive "turn-on" probe is economical, convenient and rapid for PDE5 imaging, implying that the catalytic-site-fluorescent probe will have a variety of future applications in pathological diagnosis as well as drug screening.
To enhance the understanding of PDE5 as the drug target. Herein, we designed catalytic-site-fluorescent probes that can be applied to PDE5 visualization in live cells and tissue slices, implying the potential in diagnosis and drug screening. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d1ra06247f |