Contribution of astrocytic histamine N-methyltransferase to histamine clearance and brain function in mice
Brain histamine acts as a neurotransmitter in the regulation of various brain activities. Previous studies have shown that histamine N-methyltransferase (HNMT), a histamine-metabolizing enzyme, controls brain histamine concentration and brain function. However, the relative contribution of astrocyti...
Gespeichert in:
Veröffentlicht in: | Neuropharmacology 2022-07, Vol.212, p.109065-109065, Article 109065 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brain histamine acts as a neurotransmitter in the regulation of various brain activities. Previous studies have shown that histamine N-methyltransferase (HNMT), a histamine-metabolizing enzyme, controls brain histamine concentration and brain function. However, the relative contribution of astrocytic or neuronal HNMT to the regulation of the histaminergic system is still inconclusive. Here, we phenotyped astrocytes-specific HNMT knockout (cKO) mice to clarify the involvement of astrocytic HNMT in histamine clearance and brain function.
First, we performed histological examinations using HNMT reporter mice and showed a wide distribution of HNMT in the brain and astrocytic HNMT expression. Then, we created cKO mice by Cre-loxP system and confirmed that HNMT expression in cKO primary astrocytes was robustly decreased. Although total HNMT level in the cortex was not substantially different between control and cKO brains, histamine concentration after histamine release was elevated in cKO cortex. In behavioral tests, impaired motor coordination and lower locomotor activity were observed in the cKO mice. However, anxiety-like behaviors, depression-like behaviors, and memory functions were not altered by astrocytic HNMT disruption. Although sleep analysis demonstrated that the quantity of wakefulness and sleep did not change, the increased power density of delta frequency during wakefulness indicated lower cortical activation in cKO mice. These results demonstrate that astrocytic HNMT contributes to histamine clearance after histamine release in the cortex and plays a role in the regulation of motor coordination, locomotor activity, and vigilance state.
•The wide distribution of HNMT in the brain was confirmed by in situ hybridization.•Basal histamine amount of astrocytic HNMT knockout (cKO) was not changed.•Cortical histamine amount of cKO was elevated after histamine release.•cKO mice showed the impaired motor coordination and the lowered locomotion.•Sleep analysis showed the increased power density of delta frequency of cKO mice. |
---|---|
ISSN: | 0028-3908 1873-7064 |
DOI: | 10.1016/j.neuropharm.2022.109065 |