UV cross-linked smart microgel membranes as free-standing diffusion barriers and nanoparticle bearing catalytic films
In this study we use poly( N -isopropylacrylamide) (PNIPAM) based copolymer microgels to create free-standing, transferable, thermoresponsive membranes. The microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)-benzophenone (HMABP) and spin-coated on Si wafers. Af...
Gespeichert in:
Veröffentlicht in: | RSC advances 2021-06, Vol.11 (36), p.2214-2224 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study we use poly(
N
-isopropylacrylamide) (PNIPAM) based copolymer microgels to create free-standing, transferable, thermoresponsive membranes. The microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)-benzophenone (HMABP) and spin-coated on Si wafers. After subsequent cross-linking by UV-irradiation, the formed layers easily detach from the supporting material. We obtain free standing microgel membranes with lateral extensions of several millimetres and an average layer thickness of a few hundred nanometres. They can be transferred to other substrates. As one example for potential applications we investigate the temperature dependent ion transport through the membranes
via
resistance measurements revealing a sharp reversible increase in resistance when the lower critical solution temperature of the copolymer microgels is reached. In addition, prior to cross-linking, the microgels can be decorated with silver nanoparticles and cross-linked afterwards. Such free-standing nanoparticle hybrid membranes are then used as catalytic systems for the reduction of 4-nitrophenol, which is monitored by UV/Vis spectroscopy.
Cross-linkable microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)-benzophenone (HMABP) and are subsequently UV-cross-linked to obtain smart membranes exhibiting switchable resistance. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d1ra03528b |