General Convergence Results for Linear Discriminant Updates

The problem of learning linear-discriminant concepts can be solved by various mistake-driven update procedures, including the Winnow family of algorithms and the well-known Perceptron algorithm. In this paper we define the general class of "quasi-additive" algorithms, which includes Percep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2001-06, Vol.43 (3), p.173-210
Hauptverfasser: Grove, Adam J, Littlestone, Nick, Schuurmans, Dale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of learning linear-discriminant concepts can be solved by various mistake-driven update procedures, including the Winnow family of algorithms and the well-known Perceptron algorithm. In this paper we define the general class of "quasi-additive" algorithms, which includes Perceptron and Winnow as special cases. We give a single proof of convergence that covers a broad subset of algorithms in this class, including both Perceptron and Winnow, but also many new algorithms. Our proof hinges on analyzing a generic measure of progress construction that gives insight as to when and how such algorithms converge. Our measure of progress construction also permits us to obtain good mistake bounds for individual algorithms. We apply our unified analysis to new algorithms as well as existing algorithms. When applied to known algorithms, our method "automatically" produces close variants of existing proofs (recovering similar bounds)--thus showing that, in a certain sense, these seemingly diverse results are fundamentally isomorphic. However, we also demonstrate that the unifying principles are more broadly applicable, and analyze a new class of algorithms that smoothly interpolate between the additive-update behavior of Perceptron and the multiplicative-update behavior of Winnow.[PUBLICATION ABSTRACT]
ISSN:0885-6125
1573-0565
DOI:10.1023/A:1010844028087