Ultrafast farfield simulation of non-paraxial computer generated holograms
The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with...
Gespeichert in:
Veröffentlicht in: | Optics express 2022-04, Vol.30 (8), p.13765-13775 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13775 |
---|---|
container_issue | 8 |
container_start_page | 13765 |
container_title | Optics express |
container_volume | 30 |
creator | Linss, Sebastian Michaelis, Dirk Zeitner, Uwe D |
description | The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with lateral feature sizes in the wavelength range. It uses a machine learning approach to predict the optical function based on geometry parameters. Therefore, training data are calculated by physical simulation methods to create a linear regression model. With the trained model a very fast computation of the farfield is possible with high conformity to results of rigorous methods. |
doi_str_mv | 10.1364/OE.453731 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2656201216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656201216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-6e2f8b6d27bf7bf981dc217a7c5fade730d2aeafba866a2345dfdad7563829223</originalsourceid><addsrcrecordid>eNpNkEtLw0AYRQdRbK0u_AOSpS5S5z3JUkp9UejGrocvmZkamWTiTAL671tpFeHCvYvDXRyErgmeEyb5_Xo554IpRk7QlOCS5xwX6vTfnqCLlD4wJlyV6hxNmOCKlgWdoteNHyI4SEPmILrGepOlph09DE3osuCyLnR5DxG-GvBZHdp-HGzMtrazEQZrsvfgwzZCmy7RmQOf7NWxZ2jzuHxbPOer9dPL4mGV11TgIZeWuqKShqrK7VMWxNSUKFC1cGCsYthQsOAqKKQEyrgwzoBRQrKClpSyGbo9_PYxfI42DbptUm29h86GMWkqhaSYUCL36N0BrWNIKVqn-9i0EL81wfpHnV4v9UHdnr053o5Va80f-euK7QAS6mov</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656201216</pqid></control><display><type>article</type><title>Ultrafast farfield simulation of non-paraxial computer generated holograms</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Linss, Sebastian ; Michaelis, Dirk ; Zeitner, Uwe D</creator><creatorcontrib>Linss, Sebastian ; Michaelis, Dirk ; Zeitner, Uwe D</creatorcontrib><description>The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with lateral feature sizes in the wavelength range. It uses a machine learning approach to predict the optical function based on geometry parameters. Therefore, training data are calculated by physical simulation methods to create a linear regression model. With the trained model a very fast computation of the farfield is possible with high conformity to results of rigorous methods.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.453731</identifier><identifier>PMID: 35472982</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2022-04, Vol.30 (8), p.13765-13775</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-6e2f8b6d27bf7bf981dc217a7c5fade730d2aeafba866a2345dfdad7563829223</citedby><cites>FETCH-LOGICAL-c250t-6e2f8b6d27bf7bf981dc217a7c5fade730d2aeafba866a2345dfdad7563829223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35472982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linss, Sebastian</creatorcontrib><creatorcontrib>Michaelis, Dirk</creatorcontrib><creatorcontrib>Zeitner, Uwe D</creatorcontrib><title>Ultrafast farfield simulation of non-paraxial computer generated holograms</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with lateral feature sizes in the wavelength range. It uses a machine learning approach to predict the optical function based on geometry parameters. Therefore, training data are calculated by physical simulation methods to create a linear regression model. With the trained model a very fast computation of the farfield is possible with high conformity to results of rigorous methods.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AYRQdRbK0u_AOSpS5S5z3JUkp9UejGrocvmZkamWTiTAL671tpFeHCvYvDXRyErgmeEyb5_Xo554IpRk7QlOCS5xwX6vTfnqCLlD4wJlyV6hxNmOCKlgWdoteNHyI4SEPmILrGepOlph09DE3osuCyLnR5DxG-GvBZHdp-HGzMtrazEQZrsvfgwzZCmy7RmQOf7NWxZ2jzuHxbPOer9dPL4mGV11TgIZeWuqKShqrK7VMWxNSUKFC1cGCsYthQsOAqKKQEyrgwzoBRQrKClpSyGbo9_PYxfI42DbptUm29h86GMWkqhaSYUCL36N0BrWNIKVqn-9i0EL81wfpHnV4v9UHdnr053o5Va80f-euK7QAS6mov</recordid><startdate>20220411</startdate><enddate>20220411</enddate><creator>Linss, Sebastian</creator><creator>Michaelis, Dirk</creator><creator>Zeitner, Uwe D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220411</creationdate><title>Ultrafast farfield simulation of non-paraxial computer generated holograms</title><author>Linss, Sebastian ; Michaelis, Dirk ; Zeitner, Uwe D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-6e2f8b6d27bf7bf981dc217a7c5fade730d2aeafba866a2345dfdad7563829223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linss, Sebastian</creatorcontrib><creatorcontrib>Michaelis, Dirk</creatorcontrib><creatorcontrib>Zeitner, Uwe D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linss, Sebastian</au><au>Michaelis, Dirk</au><au>Zeitner, Uwe D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast farfield simulation of non-paraxial computer generated holograms</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2022-04-11</date><risdate>2022</risdate><volume>30</volume><issue>8</issue><spage>13765</spage><epage>13775</epage><pages>13765-13775</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with lateral feature sizes in the wavelength range. It uses a machine learning approach to predict the optical function based on geometry parameters. Therefore, training data are calculated by physical simulation methods to create a linear regression model. With the trained model a very fast computation of the farfield is possible with high conformity to results of rigorous methods.</abstract><cop>United States</cop><pmid>35472982</pmid><doi>10.1364/OE.453731</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2022-04, Vol.30 (8), p.13765-13775 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2656201216 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Ultrafast farfield simulation of non-paraxial computer generated holograms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20farfield%20simulation%20of%20non-paraxial%20computer%20generated%20holograms&rft.jtitle=Optics%20express&rft.au=Linss,%20Sebastian&rft.date=2022-04-11&rft.volume=30&rft.issue=8&rft.spage=13765&rft.epage=13775&rft.pages=13765-13775&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.453731&rft_dat=%3Cproquest_cross%3E2656201216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656201216&rft_id=info:pmid/35472982&rfr_iscdi=true |