Ultrafast farfield simulation of non-paraxial computer generated holograms

The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-04, Vol.30 (8), p.13765-13775
Hauptverfasser: Linss, Sebastian, Michaelis, Dirk, Zeitner, Uwe D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with lateral feature sizes in the wavelength range. It uses a machine learning approach to predict the optical function based on geometry parameters. Therefore, training data are calculated by physical simulation methods to create a linear regression model. With the trained model a very fast computation of the farfield is possible with high conformity to results of rigorous methods.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.453731