Nanostructured multilayer hyperbolic metamaterials for high efficiency and selective solar absorption

Highly efficient solar-to-thermal conversion is desired for the renewable energy technologies, such as solar thermo-photovoltaics and solar thermo-electric systems. In order to maximize the energy conversion efficiency, solar-selective absorbers are essential with its absorption characteristics spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-03, Vol.30 (7), p.11504-11513
Hauptverfasser: Jiang, Xiaoyun, Zhou, Leiming, Hu, Jigang, Wang, Tao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highly efficient solar-to-thermal conversion is desired for the renewable energy technologies, such as solar thermo-photovoltaics and solar thermo-electric systems. In order to maximize the energy conversion efficiency, solar-selective absorbers are essential with its absorption characteristics specially tailored for solar applications. Here, we propose a wideband spectral-selective absorber based on three-dimensional (3D) nanostructured hyperbolic metamaterial (HMM), which can realize near-unity absorption across the UV and NIR spectral ranges. Moreover, the optical topological transition (OTT) of iso-frequency surface (IFS) is manipulated to selectively enhance light absorption in the entire solar spectrum, crucial for improved energy utilization. Impressive solar-to-thermal conversion efficiency of 95.5% has been achieved. Particularly, such superior properties can be retained well even over a wide range of incident angles. These findings open new avenues for designing high-performance solar thermal devices, especially in the fields related to solar energy harvesting.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.451849