Design study for an efficient semiconductor quantum light source operating in the telecom C-band based on an electrically-driven circular Bragg grating

The development of efficient sources of single photons and entangled photon pairs emitting in the low-loss wavelength region around 1550 nm is crucial for long-distance quantum communication. Moreover, direct fiber coupling and electrical carrier injection are highly desirable for deployment in comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-03, Vol.30 (7), p.10919-10928
Hauptverfasser: Barbiero, Andrea, Huwer, Jan, Skiba-Szymanska, Joanna, Müller, Tina, Stevenson, R Mark, Shields, Andrew J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of efficient sources of single photons and entangled photon pairs emitting in the low-loss wavelength region around 1550 nm is crucial for long-distance quantum communication. Moreover, direct fiber coupling and electrical carrier injection are highly desirable for deployment in compact and user-friendly systems integrated with the existing fiber infrastructure. Here we present a detailed design study of circular Bragg gratings fabricated in InP slabs and operating in the telecom C-band. These devices enable the simultaneous enhancement of the X and XX spectral lines, with collection efficiency in numerical aperture 0.65 close to 90% for the wavelength range 1520 - 1580 nm and Purcell factor up to 15. We also investigate the coupling into a single mode fiber, which exceeds 70% in UHNA4. Finally, we propose a modified device design directly compatible with electrical carrier injection, reporting Purcell factors up to 20 and collection efficiency in numerical aperture 0.65 close to 70% for the whole telecom C-band.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.452328