Dispersion compensation of high-speed data using an integrated silicon nitride ring resonator

Dispersion impairments are a well-known limitation in data center communications, limiting both the usable data rates and reaches. Several companies today adopt silicon photonics as a core technology in their transceiver products. This presents an opportunity for silicon photonics-based dispersion m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-04, Vol.30 (9), p.13959-13967
Hauptverfasser: Ong, K Y K, Chen, G F R, Xing, P, Gao, H, Tan, D T H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dispersion impairments are a well-known limitation in data center communications, limiting both the usable data rates and reaches. Several companies today adopt silicon photonics as a core technology in their transceiver products. This presents an opportunity for silicon photonics-based dispersion management technologies to be integrated with the transceiver transmitter or receiver. In this manuscript, we present a ring-resonator based, tunable dispersion compensation device, providing dispersion ranging as wide from  + 12.9 × 10 ps/nm to -12.3 × 10 ps/nm. Thermo-optic tuning from 20°C to 70°C is demonstrated to allow continuous wavelength tuning across 200 GHz. High-speed experiments using 25 Gb/s non-return-to-zero data propagating through 20 km of single mode fiber show that a significant improvement in the eye diagram is achieved after compensation with the ring-resonator device. We demonstrate a significant improvement in the BER from 10 to 10 for data rates of 25 and 25.78125 Gb/s.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.451951