Low Temperature Nano Mechano-electrocatalytic CH4 Conversion

Transforming natural resources to energy sources, such as converting CH4 to H2 and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH4 conversion regarding many of the current methods remains a critical bott...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-06, Vol.16 (6), p.8684-8693
Hauptverfasser: Tang, Junma, Kumar, Priyank V., Scott, Jason A., Tang, Jianbo, Ghasemian, Mohammad B., Mousavi, Maedehsadat, Han, Jialuo, Esrafilzadeh, Dorna, Khoshmanesh, Khashayar, Daeneke, Torben, O’Mullane, Anthony P., Kaner, Richard B., Rahim, Md. Arifur, Kalantar-Zadeh, Kourosh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transforming natural resources to energy sources, such as converting CH4 to H2 and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH4 conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni­(OH)2 cocatalysts, and mechanical energy input that offers low-temperature and scalable CH4 conversion into H2 and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH4 is converted at the Ga and Ni­(OH)2 interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH4 conversion without involving high temperature and harsh operating conditions.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c02326