Regulating Pseudo-Jahn–Teller Effect and Superstructure in Layered Cathode Materials for Reversible Alkali-Ion Intercalation
The Jahn–Teller effect (JTE) is one of the most important determinators of how much stress layered cathode materials undergo during charge and discharge; however, many reports have shown that traces of superstructure exist in pristine layered materials and irreversible phase transitions occur even a...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2022-05, Vol.144 (17), p.7929-7938 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Jahn–Teller effect (JTE) is one of the most important determinators of how much stress layered cathode materials undergo during charge and discharge; however, many reports have shown that traces of superstructure exist in pristine layered materials and irreversible phase transitions occur even after eliminating the JTE. A careful consideration of the energy of cationic distortion using a Taylor expansion indicated that second-order JTE (pseudo-JTE) is more widespread than the aforementioned JTE because of the various bonding states that occur between bonding and antibonding molecular orbitals in transition-metal octahedra. As a model case, a P2-type Mn-rich cathode (Na3/4MnO2) was investigated in detail. MnO6 octahedra are well known to undergo either elongation or contraction in a specific direction due to JTE. Here, the substitution of Li for Mn (Na3/4(Li1/4Mn3/4)O2) helped to oxidize Mn3+ to Mn4+ suppressing JTE; however, the MnO6 octahedra remained asymmetric with a clear trace of the superstructure. With various advanced analyses, we disclose the pseudo-JTE as a general reason for the asymmetric distortions of the MnO6 octahedra. These distortions lead to the significant electrochemical degradation of Na3/4Li1/4Mn3/4O2. The suppression of the pseudo-JTE modulates phase transition behaviors during Na intercalation/deintercalation and thereby improves all of the electrochemical properties. The insight obtained by coupling a theoretical background for the pseudo-JTE with verified layered cathode material lattice changes implies that many previous approaches can be rationalized by regulating pseudo-JTE. This suggests that the pseudo-JTE should be thought more important than the well-known JTE for layered cathode materials. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c02875 |