Intermediate-Phase-Modified Crystallization for Stable and Efficient CsPbI3 Perovskite Solar Cells

All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-05, Vol.14 (17), p.19614-19622
Hauptverfasser: Zhang, Liying, Guo, Tianle, Liu, Boyuan, Du, Du, Xu, Shendong, Zheng, Haiying, Zhu, Liangzheng, Pan, Xu, Liu, Guozhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19622
container_issue 17
container_start_page 19614
container_title ACS applied materials & interfaces
container_volume 14
creator Zhang, Liying
Guo, Tianle
Liu, Boyuan
Du, Du
Xu, Shendong
Zheng, Haiying
Zhu, Liangzheng
Pan, Xu
Liu, Guozhen
description All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of high-quality CsPbI3 perovskite films. Here, we reported the intermediate-phase-modified crystallization (IPMC) method, which introduces pyrrolidine hydroiodide (PI) before the formation of the perovskite phase. The hydrogen bonding, which originates from the interaction between the −NH in PI and the dimethylammonium iodide (DMAI) from the precursor solution, improved the crystallization conditions and further prompted the transition from the DMAPbI3 phase to CsPbI3 perovskite phase. The application of the IPMC method not only decreased the trap density but also changed the energy alignment for better separation of electron–hole pairs. As a result, the devices based on the PI-CsPbI3 perovskite films reached an efficiency of 18.72% and maintained 85% of their initial PCE after 1000 h of being stored in an ambient environment (∼25% RH, 25 °C). This work stimulates inspiration on how to conveniently fabricate high-quality perovskite films in industry.
doi_str_mv 10.1021/acsami.2c04308
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2655560898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655560898</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-90aef9b72182f6a3f01d92027ab9a6643b8679051d94bee2e499e4cc706728e33</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRsFavnvcoQup-ZZM9Sqi1ULFQPYc3ybu4Nc3q7lbQX2-kxdMMwzAMDyHXnM04E_wO2gg7NxMtU5KVJ2TCjVJZKXJx-u-VOicXMW4Z01KwfEKa5ZAw7LBzkDBbv0HE7Ml3zjrsaBW-Y4K-dz-QnB-o9YFuEjQ9Uhg6OrfWtQ6HRKu4bpaSrjH4r_juEtKN7yHQCvs-XpIzC33Eq6NOyevD_KV6zFbPi2V1v8qA5zJlhgFa0xSCl8JqkJbxzggmCmgMaK1kU-rCsHxMVYMoUBmDqm0LpgtRopRTcnPY_Qj-c48x1TsX2_EBDOj3sRY6z3PNSlOO1dtDdWRWb_0-DOOxmrP6D2R9AFkfQcpf5TZnZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655560898</pqid></control><display><type>article</type><title>Intermediate-Phase-Modified Crystallization for Stable and Efficient CsPbI3 Perovskite Solar Cells</title><source>ACS Publications</source><creator>Zhang, Liying ; Guo, Tianle ; Liu, Boyuan ; Du, Du ; Xu, Shendong ; Zheng, Haiying ; Zhu, Liangzheng ; Pan, Xu ; Liu, Guozhen</creator><creatorcontrib>Zhang, Liying ; Guo, Tianle ; Liu, Boyuan ; Du, Du ; Xu, Shendong ; Zheng, Haiying ; Zhu, Liangzheng ; Pan, Xu ; Liu, Guozhen</creatorcontrib><description>All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of high-quality CsPbI3 perovskite films. Here, we reported the intermediate-phase-modified crystallization (IPMC) method, which introduces pyrrolidine hydroiodide (PI) before the formation of the perovskite phase. The hydrogen bonding, which originates from the interaction between the −NH in PI and the dimethylammonium iodide (DMAI) from the precursor solution, improved the crystallization conditions and further prompted the transition from the DMAPbI3 phase to CsPbI3 perovskite phase. The application of the IPMC method not only decreased the trap density but also changed the energy alignment for better separation of electron–hole pairs. As a result, the devices based on the PI-CsPbI3 perovskite films reached an efficiency of 18.72% and maintained 85% of their initial PCE after 1000 h of being stored in an ambient environment (∼25% RH, 25 °C). This work stimulates inspiration on how to conveniently fabricate high-quality perovskite films in industry.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04308</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-05, Vol.14 (17), p.19614-19622</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3770-7918 ; 0000-0002-7048-5344 ; 0000-0003-4480-9576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c04308$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c04308$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Zhang, Liying</creatorcontrib><creatorcontrib>Guo, Tianle</creatorcontrib><creatorcontrib>Liu, Boyuan</creatorcontrib><creatorcontrib>Du, Du</creatorcontrib><creatorcontrib>Xu, Shendong</creatorcontrib><creatorcontrib>Zheng, Haiying</creatorcontrib><creatorcontrib>Zhu, Liangzheng</creatorcontrib><creatorcontrib>Pan, Xu</creatorcontrib><creatorcontrib>Liu, Guozhen</creatorcontrib><title>Intermediate-Phase-Modified Crystallization for Stable and Efficient CsPbI3 Perovskite Solar Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of high-quality CsPbI3 perovskite films. Here, we reported the intermediate-phase-modified crystallization (IPMC) method, which introduces pyrrolidine hydroiodide (PI) before the formation of the perovskite phase. The hydrogen bonding, which originates from the interaction between the −NH in PI and the dimethylammonium iodide (DMAI) from the precursor solution, improved the crystallization conditions and further prompted the transition from the DMAPbI3 phase to CsPbI3 perovskite phase. The application of the IPMC method not only decreased the trap density but also changed the energy alignment for better separation of electron–hole pairs. As a result, the devices based on the PI-CsPbI3 perovskite films reached an efficiency of 18.72% and maintained 85% of their initial PCE after 1000 h of being stored in an ambient environment (∼25% RH, 25 °C). This work stimulates inspiration on how to conveniently fabricate high-quality perovskite films in industry.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AYhBdRsFavnvcoQup-ZZM9Sqi1ULFQPYc3ybu4Nc3q7lbQX2-kxdMMwzAMDyHXnM04E_wO2gg7NxMtU5KVJ2TCjVJZKXJx-u-VOicXMW4Z01KwfEKa5ZAw7LBzkDBbv0HE7Ml3zjrsaBW-Y4K-dz-QnB-o9YFuEjQ9Uhg6OrfWtQ6HRKu4bpaSrjH4r_juEtKN7yHQCvs-XpIzC33Eq6NOyevD_KV6zFbPi2V1v8qA5zJlhgFa0xSCl8JqkJbxzggmCmgMaK1kU-rCsHxMVYMoUBmDqm0LpgtRopRTcnPY_Qj-c48x1TsX2_EBDOj3sRY6z3PNSlOO1dtDdWRWb_0-DOOxmrP6D2R9AFkfQcpf5TZnZA</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Zhang, Liying</creator><creator>Guo, Tianle</creator><creator>Liu, Boyuan</creator><creator>Du, Du</creator><creator>Xu, Shendong</creator><creator>Zheng, Haiying</creator><creator>Zhu, Liangzheng</creator><creator>Pan, Xu</creator><creator>Liu, Guozhen</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3770-7918</orcidid><orcidid>https://orcid.org/0000-0002-7048-5344</orcidid><orcidid>https://orcid.org/0000-0003-4480-9576</orcidid></search><sort><creationdate>20220504</creationdate><title>Intermediate-Phase-Modified Crystallization for Stable and Efficient CsPbI3 Perovskite Solar Cells</title><author>Zhang, Liying ; Guo, Tianle ; Liu, Boyuan ; Du, Du ; Xu, Shendong ; Zheng, Haiying ; Zhu, Liangzheng ; Pan, Xu ; Liu, Guozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-90aef9b72182f6a3f01d92027ab9a6643b8679051d94bee2e499e4cc706728e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liying</creatorcontrib><creatorcontrib>Guo, Tianle</creatorcontrib><creatorcontrib>Liu, Boyuan</creatorcontrib><creatorcontrib>Du, Du</creatorcontrib><creatorcontrib>Xu, Shendong</creatorcontrib><creatorcontrib>Zheng, Haiying</creatorcontrib><creatorcontrib>Zhu, Liangzheng</creatorcontrib><creatorcontrib>Pan, Xu</creatorcontrib><creatorcontrib>Liu, Guozhen</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liying</au><au>Guo, Tianle</au><au>Liu, Boyuan</au><au>Du, Du</au><au>Xu, Shendong</au><au>Zheng, Haiying</au><au>Zhu, Liangzheng</au><au>Pan, Xu</au><au>Liu, Guozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermediate-Phase-Modified Crystallization for Stable and Efficient CsPbI3 Perovskite Solar Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-04</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>19614</spage><epage>19622</epage><pages>19614-19622</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of high-quality CsPbI3 perovskite films. Here, we reported the intermediate-phase-modified crystallization (IPMC) method, which introduces pyrrolidine hydroiodide (PI) before the formation of the perovskite phase. The hydrogen bonding, which originates from the interaction between the −NH in PI and the dimethylammonium iodide (DMAI) from the precursor solution, improved the crystallization conditions and further prompted the transition from the DMAPbI3 phase to CsPbI3 perovskite phase. The application of the IPMC method not only decreased the trap density but also changed the energy alignment for better separation of electron–hole pairs. As a result, the devices based on the PI-CsPbI3 perovskite films reached an efficiency of 18.72% and maintained 85% of their initial PCE after 1000 h of being stored in an ambient environment (∼25% RH, 25 °C). This work stimulates inspiration on how to conveniently fabricate high-quality perovskite films in industry.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c04308</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3770-7918</orcidid><orcidid>https://orcid.org/0000-0002-7048-5344</orcidid><orcidid>https://orcid.org/0000-0003-4480-9576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-05, Vol.14 (17), p.19614-19622
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2655560898
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Intermediate-Phase-Modified Crystallization for Stable and Efficient CsPbI3 Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermediate-Phase-Modified%20Crystallization%20for%20Stable%20and%20Efficient%20CsPbI3%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Liying&rft.date=2022-05-04&rft.volume=14&rft.issue=17&rft.spage=19614&rft.epage=19622&rft.pages=19614-19622&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04308&rft_dat=%3Cproquest_acs_j%3E2655560898%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655560898&rft_id=info:pmid/&rfr_iscdi=true