Intermediate-Phase-Modified Crystallization for Stable and Efficient CsPbI3 Perovskite Solar Cells

All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-05, Vol.14 (17), p.19614-19622
Hauptverfasser: Zhang, Liying, Guo, Tianle, Liu, Boyuan, Du, Du, Xu, Shendong, Zheng, Haiying, Zhu, Liangzheng, Pan, Xu, Liu, Guozhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of high-quality CsPbI3 perovskite films. Here, we reported the intermediate-phase-modified crystallization (IPMC) method, which introduces pyrrolidine hydroiodide (PI) before the formation of the perovskite phase. The hydrogen bonding, which originates from the interaction between the −NH in PI and the dimethylammonium iodide (DMAI) from the precursor solution, improved the crystallization conditions and further prompted the transition from the DMAPbI3 phase to CsPbI3 perovskite phase. The application of the IPMC method not only decreased the trap density but also changed the energy alignment for better separation of electron–hole pairs. As a result, the devices based on the PI-CsPbI3 perovskite films reached an efficiency of 18.72% and maintained 85% of their initial PCE after 1000 h of being stored in an ambient environment (∼25% RH, 25 °C). This work stimulates inspiration on how to conveniently fabricate high-quality perovskite films in industry.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c04308