ROS-triggered nanoinducer based on dermatan sulfate enhances immunogenic cell death in melanoma
Due to its complexity, diversity and heterogeneity, melanoma is a kind of malignant tumor. It has been proved that the enhancement of anti-tumor immune response such as immunogenic cell death (ICD) is an important therapeutic strategy. In previous studies, we confirmed that dermatan sulfate (DS) fro...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2022-08, Vol.348, p.22-33 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to its complexity, diversity and heterogeneity, melanoma is a kind of malignant tumor. It has been proved that the enhancement of anti-tumor immune response such as immunogenic cell death (ICD) is an important therapeutic strategy. In previous studies, we confirmed that dermatan sulfate (DS) from skin tissue could specifically homing to melanoma B16F10 cells. In this study, we propose a nanoinducer (DOX/ADS NP) based on a functional DS for melanoma. This nanosystem is composed of DS as framework, aromatic thioketal derivative (ATK) as functional grafting unit and doxorubicin (DOX) designed as an ICD inducer. Through the intermolecular interaction between DOX and ATK, DOX/ADS NP with specific-homing, high-loading and ROS-triggering release was obtained via self-assemble. Compared with free DOX and non-functionalized nanomedicine, DOX/ADS NP could release DOX into B16F10 cells better, and strongly induce the translocation of calreticulin (CRT) to the cell membrane. CRT is a marker of ICD, also as a “eat me” signal to stimulate the maturation and antigen presentation of dendritic cells. Therefore, a series of subsequent immune responses were activated: maturation of dendritic cells, T cells proliferation, increased tumor-infiltrating CTLs and the ratio of CTLs to Tregs, and up-regulated cytotoxic cytokine expression. In conclusion, DOX/ADS NP promoted ICD-associated immune response through more specific targeting effect and sensitive responsive DOX release, achieving better inhibitory effect on melanoma than free DOX and other nanoformulation. This biomimetic ICD nanoinducer based on DS is expected to provide new strategies and references for the treatment of melanoma.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2022.04.026 |