Smart fluorescence aptasensor using nanofiber functionalized with carbon quantum dot for specific detection of pathogenic bacteria in the wound

We developed for the first time a novel and smart nanofiber (NF) network with the electrospinning method to create an amplified fluorescent biosensing platform for the detection of Staphylococcus aureus (S. aureus) bacteria in wound. The sensing platform is constructed based on surface modification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2022-08, Vol.246, p.123454-123454, Article 123454
Hauptverfasser: Pebdeni, Azam Bagheri, Hosseini, Morteza, Barkhordari, Aref
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed for the first time a novel and smart nanofiber (NF) network with the electrospinning method to create an amplified fluorescent biosensing platform for the detection of Staphylococcus aureus (S. aureus) bacteria in wound. The sensing platform is constructed based on surface modification of NFs by carbon quantum dots (CQDs) on the NF membrane surface, leading to large fluorescence signal amplification. CQDs synthesis was done from orto-phenylenediamine (OPD) with yellow emission fluorescence. Incorporation of CQDs leads to the uniform fluorescence of modified NFs. The proposed biosensing platform can also be applied to detect S. aureus bacteria with high sensitivity and selectivity via a specific aptamer. The linear sensing range for different S. aureus concentration from 10 to 108 CFU/mL and the detection limit of 10 CFU/mL was attained. For the first time these scaffolds were designed for the detection of specific pathogenic bacteria in wound using fluorescence signal of NFs, which can be seen by the naked eye under UV lamp. Enhancing in the fluorescence intensity after putting the modified NFs on skin wounds of mice for 2 h showed the successful application of this novel aptasensor. [Display omitted] •For the first time a novel and smart nanofiber used as a fluorescent biosensor for the detection of S. aureus bacteria in skin wound.•These scaffolds were designed for detection of the specific bacteria, which can be seen naked eye under a UV lamp.•Surface modification of NFs by carbon quantum dots, leading to their fluorescence emission.•Immobilization of aptamer on the surface of NFs makes specific detection ability to them.•The linear sensing range for different S. aureus concentrations was 10–108 CFU/mL and the detection limit was 10 CFU/mL.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2022.123454