Hybrid consensus theoretic classification
Hybrid classification methods based on consensus from several data sources are considered. Each data source is at first treated separately and modeled using statistical methods. Then weighting mechanisms are used to control the influence of each data source in the combined classification. The weight...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 1997-07, Vol.35 (4), p.833-843 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hybrid classification methods based on consensus from several data sources are considered. Each data source is at first treated separately and modeled using statistical methods. Then weighting mechanisms are used to control the influence of each data source in the combined classification. The weights are optimized in order to improve the combined classification accuracies. Both linear and nonlinear optimization methods are considered and used in classification of two multisource remote sensing and geographic data sets. A nonlinear method which utilizes a neural network gives excellent experimental results. The hybrid statistical/neural method outperforms all other methods in terms of test accuracies in the experiments. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/36.602526 |