Cell growth dynamics in two types of apical meristems in fern gametophytes

SUMMARY In contrast to seed plants, the gametophytes of seed‐free plants develop pluripotent meristems, which promote and sustain their independent growth and development. To date, the cellular basis of meristem development in gametophytes of seed‐free ferns remains largely unknown. In this study, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2022-07, Vol.111 (1), p.149-163
Hauptverfasser: Wu, Xiao, Yan, An, Yang, Xi, Banks, Jo Ann, Zhang, Shaoling, Zhou, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY In contrast to seed plants, the gametophytes of seed‐free plants develop pluripotent meristems, which promote and sustain their independent growth and development. To date, the cellular basis of meristem development in gametophytes of seed‐free ferns remains largely unknown. In this study, we used Woodsia obtusa, the blunt‐lobe cliff fern, to quantitatively determine cell growth dynamics in two different types of apical meristems – the apical initial centered meristem and the multicellular apical meristem in gametophytes. Through confocal time‐lapse live imaging and computational image analysis and quantification, we determined unique patterns of cell division and growth that sustain or terminate apical initials, dictate the transition from apical initials to multicellular apical meristems, and drive proliferation of apical meristems in ferns. Quantitative results showed that small cells correlated to active cell division in fern gametophytes. The marginal cells of multicellular apical meristems in fern gametophytes undergo division in both anticlinal and periclinal orientations, not only increasing cell numbers but also playing a dominant role in increasing cell layers during gametophyte development. All these findings provide insights into the function and regulation of meristems in gametophytes of seed‐free vascular plants, suggesting both conserved and diversified mechanisms underlying meristem cell proliferation across land plants. Significance Statement In contrast to seed plants, seed‐free ferns develop meristems in their gametophytes. This work quantitatively uncovers the cellular basis of the initiation and proliferation of two different meristems in fern gametophytes.
ISSN:0960-7412
1365-313X
DOI:10.1111/tpj.15784