Fractionation of technical lignin and its application on the lignin/poly-(butylene adipate-co-terephthalate) bio-composites

Complex and heterogeneous structures of lignin impede its further conversion and valorization. Herein, three technical lignins (from softwood, hardwood, and grass) were fractionated with acetone solvent to reduce their structural heterogeneity, which were then blended with poly-(butylene adipate-co-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2022-06, Vol.209 (Pt A), p.1065-1074
Hauptverfasser: Xiong, Shao-Jun, Zhou, Si-Jie, Wang, Hao-Hui, Wang, Han-Min, Yu, Shixin, Zheng, Lu, Yuan, Tong-Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex and heterogeneous structures of lignin impede its further conversion and valorization. Herein, three technical lignins (from softwood, hardwood, and grass) were fractionated with acetone solvent to reduce their structural heterogeneity, which were then blended with poly-(butylene adipate-co-terephthalate) (PBAT) to fabricate biodegradable bio-composites. Macromolecular structures of lignins and their effects on the properties of lignin/PBAT composites were thoroughly investigated. Results showed that all fractionated lignin composites displayed better properties. Particularly, the raw and fractionated softwood lignin-based composites exhibited superior performance compared with others. Benefiting from the lower molecular weight, hydroxyl groups, and condensation, acetone fractionated softwood lignin presented the lowest Tg (115.7 °C), achieving ideal melt miscibility and interfacial interaction between lignin and PBAT. The decreased Tg of lignin facilitated the lignin dispersion in the matrix and increase the mechanical strength of the composites. Overall, the fractionated technical lignin possessed desirable physical and chemical structure features, conferring composites good miscibility and mechanical properties. [Display omitted] •Three types of technical lignin were fractionated and systematically characterized.•Acetone fractionation reduces the structural heterogeneity of lignin.•The fractionated lignin achieved higher mechanical strength of the composites.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.04.065