Probing the Disorder Inside the Cubic Unit Cell of Halide Perovskites from First-Principles

Strong deviations in the finite temperature atomic structure of halide perovskites from their average geometry can have profound impacts on optoelectronic and other device-relevant properties. Detailed mechanistic understandings of these structural fluctuations and their consequences remain, however...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-05, Vol.14 (20), p.22973-22981
Hauptverfasser: Zhu, Xiangzhou, Caicedo-Dávila, Sebastián, Gehrmann, Christian, Egger, David A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strong deviations in the finite temperature atomic structure of halide perovskites from their average geometry can have profound impacts on optoelectronic and other device-relevant properties. Detailed mechanistic understandings of these structural fluctuations and their consequences remain, however, limited by the experimental and theoretical challenges involved in characterizing strongly anharmonic vibrational characteristics and their impact on other properties. We overcome some of these challenges by a theoretical characterization of the vibrational interactions that occur among the atoms in the prototypical cubic CsPbBr3. Our investigation based on first-principles molecular dynamics calculations finds that the motions of neighboring Cs–Br atoms interlock, which appears as the most likely Cs–Br distance being significantly shorter than what is inferred from an ideal cubic structure. This form of dynamic Cs–Br coupling coincides with very shallow dynamic potential wells for Br motions that occur across a locally and dynamically disordered energy landscape. We reveal an interesting dynamic coupling mechanism among the atoms within the nominal unit cell of cubic CsPbBr3 and quantify the important local structural fluctuations on an atomic scale.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c23099