Gaussian limits for discrepancies I. Asymptotic results

We consider the problem of finding, for a given quadratic measure of non-uniformity of a set of N points (such as L 2 star-discrepancy or diaphony), the asymptotic distribution of this discrepancy for truly random points in the limit N → ∞. We then examine the circumstances under which this distribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 1997-12, Vol.107 (1), p.1-20
Hauptverfasser: van Hameren, André, Kleiss, Ronald, Hoogland, Jiri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of finding, for a given quadratic measure of non-uniformity of a set of N points (such as L 2 star-discrepancy or diaphony), the asymptotic distribution of this discrepancy for truly random points in the limit N → ∞. We then examine the circumstances under which this distribution approaches a normal distribution. For large classes of non-uniformity measures, a ‘Central Limit Theorem’ can be derived.
ISSN:0010-4655
1879-2944
DOI:10.1016/S0010-4655(97)00105-7