Gaussian limits for discrepancies I. Asymptotic results
We consider the problem of finding, for a given quadratic measure of non-uniformity of a set of N points (such as L 2 star-discrepancy or diaphony), the asymptotic distribution of this discrepancy for truly random points in the limit N → ∞. We then examine the circumstances under which this distribu...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 1997-12, Vol.107 (1), p.1-20 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of finding, for a given quadratic measure of non-uniformity of a set of
N points (such as
L
2 star-discrepancy or diaphony), the asymptotic distribution of this discrepancy for truly random points in the limit
N → ∞. We then examine the circumstances under which this distribution approaches a normal distribution. For large classes of non-uniformity measures, a ‘Central Limit Theorem’ can be derived. |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/S0010-4655(97)00105-7 |