Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma

Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial ina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-06, Vol.56 (12), p.8920-8931
Hauptverfasser: Gu, Xia, Huang, Dan, Chen, Juhong, Li, Xiang, Zhou, Yongquan, Huang, Manhong, Liu, Yanan, Yu, Pingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8931
container_issue 12
container_start_page 8920
container_title Environmental science & technology
container_volume 56
creator Gu, Xia
Huang, Dan
Chen, Juhong
Li, Xiang
Zhou, Yongquan
Huang, Manhong
Liu, Yanan
Yu, Pingfeng
description Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.
doi_str_mv 10.1021/acs.est.2c01516
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2652865271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652865271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</originalsourceid><addsrcrecordid>eNp1kc9r2zAUx8VoWbN2596KoJfBcKofkS0d03RbA4Hm0MBuRpbkRMWWXMleyW1_-pQlTaHQg3hCfL7fp_e-AFxiNMaI4Bup4tjEfkwUwgznn8AIM4Iyxhk-ASOEMM0EzX-fgS8xPiGECEX8MzijbEK5KCYj8PdWqt4EKxs4d-lq_8jeegel0_DW-to2LbyzMQzd_-d-E_yw3iRW27VxfohwGXy3kWsDp2_qVbRuDRf-JZu73rho-y2c-UbDad_62G1SQwWXjYytvACntWyi-Xqo52D188fj7D5bPPyaz6aLTNIc91mVC4mJMdQwzSul0ESLQtdY5rjQgmGiZaWMrtO0vNDKECpUxTHlSihKKaHn4Nvetwv-eUg7K1sblWka6UwaoyQ5IzydAif0-h365Ifg0u8SVQg-IYKJRN3sKRV8jMHUZRdsK8O2xKjchVOmcMqd-hBOUlwdfIeqNfrIv6aRgO97YKc89vzI7h9kMZzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679842959</pqid></control><display><type>article</type><title>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</title><source>ACS Publications</source><creator>Gu, Xia ; Huang, Dan ; Chen, Juhong ; Li, Xiang ; Zhou, Yongquan ; Huang, Manhong ; Liu, Yanan ; Yu, Pingfeng</creator><creatorcontrib>Gu, Xia ; Huang, Dan ; Chen, Juhong ; Li, Xiang ; Zhou, Yongquan ; Huang, Manhong ; Liu, Yanan ; Yu, Pingfeng</creatorcontrib><description>Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c01516</identifier><identifier>PMID: 35438974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; Bacteria ; Biofilms ; Deactivation ; Disruption ; Drug resistance ; E coli ; Escherichia coli ; Inactivation ; Intracellular ; Lysis ; Membranes ; Metagenomics ; Microorganisms ; Mitomycin C ; Oxidative stress ; Phages ; Plasma ; Prophages ; Treatment and Resource Recovery ; Water treatment</subject><ispartof>Environmental science &amp; technology, 2022-06, Vol.56 (12), p.8920-8931</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 22, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</citedby><cites>FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</cites><orcidid>0000-0002-6484-2739 ; 0000-0002-2582-7501 ; 0000-0003-0402-773X ; 0000-0001-5314-6327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c01516$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c01516$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35438974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Xia</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Chen, Juhong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Huang, Manhong</creatorcontrib><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Yu, Pingfeng</creatorcontrib><title>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Deactivation</subject><subject>Disruption</subject><subject>Drug resistance</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Inactivation</subject><subject>Intracellular</subject><subject>Lysis</subject><subject>Membranes</subject><subject>Metagenomics</subject><subject>Microorganisms</subject><subject>Mitomycin C</subject><subject>Oxidative stress</subject><subject>Phages</subject><subject>Plasma</subject><subject>Prophages</subject><subject>Treatment and Resource Recovery</subject><subject>Water treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9r2zAUx8VoWbN2596KoJfBcKofkS0d03RbA4Hm0MBuRpbkRMWWXMleyW1_-pQlTaHQg3hCfL7fp_e-AFxiNMaI4Bup4tjEfkwUwgznn8AIM4Iyxhk-ASOEMM0EzX-fgS8xPiGECEX8MzijbEK5KCYj8PdWqt4EKxs4d-lq_8jeegel0_DW-to2LbyzMQzd_-d-E_yw3iRW27VxfohwGXy3kWsDp2_qVbRuDRf-JZu73rho-y2c-UbDad_62G1SQwWXjYytvACntWyi-Xqo52D188fj7D5bPPyaz6aLTNIc91mVC4mJMdQwzSul0ESLQtdY5rjQgmGiZaWMrtO0vNDKECpUxTHlSihKKaHn4Nvetwv-eUg7K1sblWka6UwaoyQ5IzydAif0-h365Ifg0u8SVQg-IYKJRN3sKRV8jMHUZRdsK8O2xKjchVOmcMqd-hBOUlwdfIeqNfrIv6aRgO97YKc89vzI7h9kMZzH</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Gu, Xia</creator><creator>Huang, Dan</creator><creator>Chen, Juhong</creator><creator>Li, Xiang</creator><creator>Zhou, Yongquan</creator><creator>Huang, Manhong</creator><creator>Liu, Yanan</creator><creator>Yu, Pingfeng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6484-2739</orcidid><orcidid>https://orcid.org/0000-0002-2582-7501</orcidid><orcidid>https://orcid.org/0000-0003-0402-773X</orcidid><orcidid>https://orcid.org/0000-0001-5314-6327</orcidid></search><sort><creationdate>20220621</creationdate><title>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</title><author>Gu, Xia ; Huang, Dan ; Chen, Juhong ; Li, Xiang ; Zhou, Yongquan ; Huang, Manhong ; Liu, Yanan ; Yu, Pingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Deactivation</topic><topic>Disruption</topic><topic>Drug resistance</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Inactivation</topic><topic>Intracellular</topic><topic>Lysis</topic><topic>Membranes</topic><topic>Metagenomics</topic><topic>Microorganisms</topic><topic>Mitomycin C</topic><topic>Oxidative stress</topic><topic>Phages</topic><topic>Plasma</topic><topic>Prophages</topic><topic>Treatment and Resource Recovery</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Xia</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Chen, Juhong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Huang, Manhong</creatorcontrib><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Yu, Pingfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Xia</au><au>Huang, Dan</au><au>Chen, Juhong</au><au>Li, Xiang</au><au>Zhou, Yongquan</au><au>Huang, Manhong</au><au>Liu, Yanan</au><au>Yu, Pingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-06-21</date><risdate>2022</risdate><volume>56</volume><issue>12</issue><spage>8920</spage><epage>8931</epage><pages>8920-8931</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35438974</pmid><doi>10.1021/acs.est.2c01516</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6484-2739</orcidid><orcidid>https://orcid.org/0000-0002-2582-7501</orcidid><orcidid>https://orcid.org/0000-0003-0402-773X</orcidid><orcidid>https://orcid.org/0000-0001-5314-6327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2022-06, Vol.56 (12), p.8920-8931
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2652865271
source ACS Publications
subjects Antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
Bacteria
Biofilms
Deactivation
Disruption
Drug resistance
E coli
Escherichia coli
Inactivation
Intracellular
Lysis
Membranes
Metagenomics
Microorganisms
Mitomycin C
Oxidative stress
Phages
Plasma
Prophages
Treatment and Resource Recovery
Water treatment
title Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Inactivation%20and%20Biofilm%20Disruption%20through%20Indigenous%20Prophage%20Activation%20Using%20Low-Intensity%20Cold%20Atmospheric%20Plasma&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Gu,%20Xia&rft.date=2022-06-21&rft.volume=56&rft.issue=12&rft.spage=8920&rft.epage=8931&rft.pages=8920-8931&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c01516&rft_dat=%3Cproquest_cross%3E2652865271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679842959&rft_id=info:pmid/35438974&rfr_iscdi=true