Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma
Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial ina...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-06, Vol.56 (12), p.8920-8931 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8931 |
---|---|
container_issue | 12 |
container_start_page | 8920 |
container_title | Environmental science & technology |
container_volume | 56 |
creator | Gu, Xia Huang, Dan Chen, Juhong Li, Xiang Zhou, Yongquan Huang, Manhong Liu, Yanan Yu, Pingfeng |
description | Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems. |
doi_str_mv | 10.1021/acs.est.2c01516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2652865271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652865271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</originalsourceid><addsrcrecordid>eNp1kc9r2zAUx8VoWbN2596KoJfBcKofkS0d03RbA4Hm0MBuRpbkRMWWXMleyW1_-pQlTaHQg3hCfL7fp_e-AFxiNMaI4Bup4tjEfkwUwgznn8AIM4Iyxhk-ASOEMM0EzX-fgS8xPiGECEX8MzijbEK5KCYj8PdWqt4EKxs4d-lq_8jeegel0_DW-to2LbyzMQzd_-d-E_yw3iRW27VxfohwGXy3kWsDp2_qVbRuDRf-JZu73rho-y2c-UbDad_62G1SQwWXjYytvACntWyi-Xqo52D188fj7D5bPPyaz6aLTNIc91mVC4mJMdQwzSul0ESLQtdY5rjQgmGiZaWMrtO0vNDKECpUxTHlSihKKaHn4Nvetwv-eUg7K1sblWka6UwaoyQ5IzydAif0-h365Ifg0u8SVQg-IYKJRN3sKRV8jMHUZRdsK8O2xKjchVOmcMqd-hBOUlwdfIeqNfrIv6aRgO97YKc89vzI7h9kMZzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679842959</pqid></control><display><type>article</type><title>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</title><source>ACS Publications</source><creator>Gu, Xia ; Huang, Dan ; Chen, Juhong ; Li, Xiang ; Zhou, Yongquan ; Huang, Manhong ; Liu, Yanan ; Yu, Pingfeng</creator><creatorcontrib>Gu, Xia ; Huang, Dan ; Chen, Juhong ; Li, Xiang ; Zhou, Yongquan ; Huang, Manhong ; Liu, Yanan ; Yu, Pingfeng</creatorcontrib><description>Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c01516</identifier><identifier>PMID: 35438974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; Bacteria ; Biofilms ; Deactivation ; Disruption ; Drug resistance ; E coli ; Escherichia coli ; Inactivation ; Intracellular ; Lysis ; Membranes ; Metagenomics ; Microorganisms ; Mitomycin C ; Oxidative stress ; Phages ; Plasma ; Prophages ; Treatment and Resource Recovery ; Water treatment</subject><ispartof>Environmental science & technology, 2022-06, Vol.56 (12), p.8920-8931</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 22, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</citedby><cites>FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</cites><orcidid>0000-0002-6484-2739 ; 0000-0002-2582-7501 ; 0000-0003-0402-773X ; 0000-0001-5314-6327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c01516$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c01516$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35438974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Xia</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Chen, Juhong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Huang, Manhong</creatorcontrib><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Yu, Pingfeng</creatorcontrib><title>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Deactivation</subject><subject>Disruption</subject><subject>Drug resistance</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Inactivation</subject><subject>Intracellular</subject><subject>Lysis</subject><subject>Membranes</subject><subject>Metagenomics</subject><subject>Microorganisms</subject><subject>Mitomycin C</subject><subject>Oxidative stress</subject><subject>Phages</subject><subject>Plasma</subject><subject>Prophages</subject><subject>Treatment and Resource Recovery</subject><subject>Water treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9r2zAUx8VoWbN2596KoJfBcKofkS0d03RbA4Hm0MBuRpbkRMWWXMleyW1_-pQlTaHQg3hCfL7fp_e-AFxiNMaI4Bup4tjEfkwUwgznn8AIM4Iyxhk-ASOEMM0EzX-fgS8xPiGECEX8MzijbEK5KCYj8PdWqt4EKxs4d-lq_8jeegel0_DW-to2LbyzMQzd_-d-E_yw3iRW27VxfohwGXy3kWsDp2_qVbRuDRf-JZu73rho-y2c-UbDad_62G1SQwWXjYytvACntWyi-Xqo52D188fj7D5bPPyaz6aLTNIc91mVC4mJMdQwzSul0ESLQtdY5rjQgmGiZaWMrtO0vNDKECpUxTHlSihKKaHn4Nvetwv-eUg7K1sblWka6UwaoyQ5IzydAif0-h365Ifg0u8SVQg-IYKJRN3sKRV8jMHUZRdsK8O2xKjchVOmcMqd-hBOUlwdfIeqNfrIv6aRgO97YKc89vzI7h9kMZzH</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Gu, Xia</creator><creator>Huang, Dan</creator><creator>Chen, Juhong</creator><creator>Li, Xiang</creator><creator>Zhou, Yongquan</creator><creator>Huang, Manhong</creator><creator>Liu, Yanan</creator><creator>Yu, Pingfeng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6484-2739</orcidid><orcidid>https://orcid.org/0000-0002-2582-7501</orcidid><orcidid>https://orcid.org/0000-0003-0402-773X</orcidid><orcidid>https://orcid.org/0000-0001-5314-6327</orcidid></search><sort><creationdate>20220621</creationdate><title>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</title><author>Gu, Xia ; Huang, Dan ; Chen, Juhong ; Li, Xiang ; Zhou, Yongquan ; Huang, Manhong ; Liu, Yanan ; Yu, Pingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-b69a12ee3e5d8bcc04d97df1a617d9512dabcedf93687dce239cb8138c9c33323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Deactivation</topic><topic>Disruption</topic><topic>Drug resistance</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Inactivation</topic><topic>Intracellular</topic><topic>Lysis</topic><topic>Membranes</topic><topic>Metagenomics</topic><topic>Microorganisms</topic><topic>Mitomycin C</topic><topic>Oxidative stress</topic><topic>Phages</topic><topic>Plasma</topic><topic>Prophages</topic><topic>Treatment and Resource Recovery</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Xia</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Chen, Juhong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Huang, Manhong</creatorcontrib><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Yu, Pingfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Xia</au><au>Huang, Dan</au><au>Chen, Juhong</au><au>Li, Xiang</au><au>Zhou, Yongquan</au><au>Huang, Manhong</au><au>Liu, Yanan</au><au>Yu, Pingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-06-21</date><risdate>2022</risdate><volume>56</volume><issue>12</issue><spage>8920</spage><epage>8931</epage><pages>8920-8931</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35438974</pmid><doi>10.1021/acs.est.2c01516</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6484-2739</orcidid><orcidid>https://orcid.org/0000-0002-2582-7501</orcidid><orcidid>https://orcid.org/0000-0003-0402-773X</orcidid><orcidid>https://orcid.org/0000-0001-5314-6327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2022-06, Vol.56 (12), p.8920-8931 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2652865271 |
source | ACS Publications |
subjects | Antibiotic resistance Antibiotics Antiinfectives and antibacterials Bacteria Biofilms Deactivation Disruption Drug resistance E coli Escherichia coli Inactivation Intracellular Lysis Membranes Metagenomics Microorganisms Mitomycin C Oxidative stress Phages Plasma Prophages Treatment and Resource Recovery Water treatment |
title | Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Inactivation%20and%20Biofilm%20Disruption%20through%20Indigenous%20Prophage%20Activation%20Using%20Low-Intensity%20Cold%20Atmospheric%20Plasma&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Gu,%20Xia&rft.date=2022-06-21&rft.volume=56&rft.issue=12&rft.spage=8920&rft.epage=8931&rft.pages=8920-8931&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c01516&rft_dat=%3Cproquest_cross%3E2652865271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679842959&rft_id=info:pmid/35438974&rfr_iscdi=true |