Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma

Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial ina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-06, Vol.56 (12), p.8920-8931
Hauptverfasser: Gu, Xia, Huang, Dan, Chen, Juhong, Li, Xiang, Zhou, Yongquan, Huang, Manhong, Liu, Yanan, Yu, Pingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda−) [E. coli (λ−)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2 –) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our “inside-out” strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.2c01516