Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel
A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-08, Vol.61 (33), p.e202205125-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 33 |
container_start_page | e202205125 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Nakamoto, Masahiko Kitano, Shiro Matsusaki, Michiya |
description | A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition.
Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload. |
doi_str_mv | 10.1002/anie.202205125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2652863835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652863835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EoqWwMqJILCwp_okdeyxVSyshYCiskRvfQConLnEj1I1H4Bl5Ely1FImF6V5dnfvp00HonOA-wZhe67qEPsWUYk4oP0BdwimJWZqyw7AnjMWp5KSDTrxfBF5KLI5Rh_EkIUkqumh6U7pK542rnIW8tfD18TluwYKJZo2ufQn1Knp2tq0genzVHnbnVenqyBWRjiZr07gXsKfoqNDWw9lu9tDTeDQbTuK7h9vpcHAX5wlTPKZEpkooLgRXWMypJgawLKTSoRMlRhmh5pTknFFuUpKGmiY8Em0MM4Jw1kNX29xl495a8KusKn0O1uoaXOszKjiVgkm2QS__oAvXNnVoFyilJEuCrED1t1Sw4H0DRbZsyko364zgbCM520jO9pLDw8Uutp1XYPb4j9UAqC3wXlpY_xOXDe6no9_wbxx0hwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699834521</pqid></control><display><type>article</type><title>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nakamoto, Masahiko ; Kitano, Shiro ; Matsusaki, Michiya</creator><creatorcontrib>Nakamoto, Masahiko ; Kitano, Shiro ; Matsusaki, Michiya</creatorcontrib><description>A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition.
Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205125</identifier><identifier>PMID: 35441476</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylic acid ; Biomacromolecule-Responsive Hydrogel ; Equilibrium conditions ; Fuels ; Hydrogel-Enzyme Composite ; Hydrogels ; Linkages ; Lysine ; Phase transitions ; Systems Chemistry ; Transient Volume Phase Transition ; Trypsin</subject><ispartof>Angewandte Chemie International Edition, 2022-08, Vol.61 (33), p.e202205125-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</citedby><cites>FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</cites><orcidid>0000-0003-4294-9313 ; 0000-0003-4570-5429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202205125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202205125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35441476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamoto, Masahiko</creatorcontrib><creatorcontrib>Kitano, Shiro</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><title>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition.
Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload.</description><subject>Acrylic acid</subject><subject>Biomacromolecule-Responsive Hydrogel</subject><subject>Equilibrium conditions</subject><subject>Fuels</subject><subject>Hydrogel-Enzyme Composite</subject><subject>Hydrogels</subject><subject>Linkages</subject><subject>Lysine</subject><subject>Phase transitions</subject><subject>Systems Chemistry</subject><subject>Transient Volume Phase Transition</subject><subject>Trypsin</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EoqWwMqJILCwp_okdeyxVSyshYCiskRvfQConLnEj1I1H4Bl5Ely1FImF6V5dnfvp00HonOA-wZhe67qEPsWUYk4oP0BdwimJWZqyw7AnjMWp5KSDTrxfBF5KLI5Rh_EkIUkqumh6U7pK542rnIW8tfD18TluwYKJZo2ufQn1Knp2tq0genzVHnbnVenqyBWRjiZr07gXsKfoqNDWw9lu9tDTeDQbTuK7h9vpcHAX5wlTPKZEpkooLgRXWMypJgawLKTSoRMlRhmh5pTknFFuUpKGmiY8Em0MM4Jw1kNX29xl495a8KusKn0O1uoaXOszKjiVgkm2QS__oAvXNnVoFyilJEuCrED1t1Sw4H0DRbZsyko364zgbCM520jO9pLDw8Uutp1XYPb4j9UAqC3wXlpY_xOXDe6no9_wbxx0hwU</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Nakamoto, Masahiko</creator><creator>Kitano, Shiro</creator><creator>Matsusaki, Michiya</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4294-9313</orcidid><orcidid>https://orcid.org/0000-0003-4570-5429</orcidid></search><sort><creationdate>20220815</creationdate><title>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</title><author>Nakamoto, Masahiko ; Kitano, Shiro ; Matsusaki, Michiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acrylic acid</topic><topic>Biomacromolecule-Responsive Hydrogel</topic><topic>Equilibrium conditions</topic><topic>Fuels</topic><topic>Hydrogel-Enzyme Composite</topic><topic>Hydrogels</topic><topic>Linkages</topic><topic>Lysine</topic><topic>Phase transitions</topic><topic>Systems Chemistry</topic><topic>Transient Volume Phase Transition</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamoto, Masahiko</creatorcontrib><creatorcontrib>Kitano, Shiro</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamoto, Masahiko</au><au>Kitano, Shiro</au><au>Matsusaki, Michiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-08-15</date><risdate>2022</risdate><volume>61</volume><issue>33</issue><spage>e202205125</spage><epage>n/a</epage><pages>e202205125-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition.
Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35441476</pmid><doi>10.1002/anie.202205125</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4294-9313</orcidid><orcidid>https://orcid.org/0000-0003-4570-5429</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-08, Vol.61 (33), p.e202205125-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2652863835 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acrylic acid Biomacromolecule-Responsive Hydrogel Equilibrium conditions Fuels Hydrogel-Enzyme Composite Hydrogels Linkages Lysine Phase transitions Systems Chemistry Transient Volume Phase Transition Trypsin |
title | Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T04%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomacromolecule%E2%80%90Fueled%20Transient%20Volume%20Phase%20Transition%20of%20a%20Hydrogel&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Nakamoto,%20Masahiko&rft.date=2022-08-15&rft.volume=61&rft.issue=33&rft.spage=e202205125&rft.epage=n/a&rft.pages=e202205125-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205125&rft_dat=%3Cproquest_cross%3E2652863835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699834521&rft_id=info:pmid/35441476&rfr_iscdi=true |