Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel

A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-08, Vol.61 (33), p.e202205125-n/a
Hauptverfasser: Nakamoto, Masahiko, Kitano, Shiro, Matsusaki, Michiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e202205125
container_title Angewandte Chemie International Edition
container_volume 61
creator Nakamoto, Masahiko
Kitano, Shiro
Matsusaki, Michiya
description A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition. Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload.
doi_str_mv 10.1002/anie.202205125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2652863835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652863835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EoqWwMqJILCwp_okdeyxVSyshYCiskRvfQConLnEj1I1H4Bl5Ely1FImF6V5dnfvp00HonOA-wZhe67qEPsWUYk4oP0BdwimJWZqyw7AnjMWp5KSDTrxfBF5KLI5Rh_EkIUkqumh6U7pK542rnIW8tfD18TluwYKJZo2ufQn1Knp2tq0genzVHnbnVenqyBWRjiZr07gXsKfoqNDWw9lu9tDTeDQbTuK7h9vpcHAX5wlTPKZEpkooLgRXWMypJgawLKTSoRMlRhmh5pTknFFuUpKGmiY8Em0MM4Jw1kNX29xl495a8KusKn0O1uoaXOszKjiVgkm2QS__oAvXNnVoFyilJEuCrED1t1Sw4H0DRbZsyko364zgbCM520jO9pLDw8Uutp1XYPb4j9UAqC3wXlpY_xOXDe6no9_wbxx0hwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699834521</pqid></control><display><type>article</type><title>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nakamoto, Masahiko ; Kitano, Shiro ; Matsusaki, Michiya</creator><creatorcontrib>Nakamoto, Masahiko ; Kitano, Shiro ; Matsusaki, Michiya</creatorcontrib><description>A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition. Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205125</identifier><identifier>PMID: 35441476</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylic acid ; Biomacromolecule-Responsive Hydrogel ; Equilibrium conditions ; Fuels ; Hydrogel-Enzyme Composite ; Hydrogels ; Linkages ; Lysine ; Phase transitions ; Systems Chemistry ; Transient Volume Phase Transition ; Trypsin</subject><ispartof>Angewandte Chemie International Edition, 2022-08, Vol.61 (33), p.e202205125-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</citedby><cites>FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</cites><orcidid>0000-0003-4294-9313 ; 0000-0003-4570-5429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202205125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202205125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35441476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamoto, Masahiko</creatorcontrib><creatorcontrib>Kitano, Shiro</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><title>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition. Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload.</description><subject>Acrylic acid</subject><subject>Biomacromolecule-Responsive Hydrogel</subject><subject>Equilibrium conditions</subject><subject>Fuels</subject><subject>Hydrogel-Enzyme Composite</subject><subject>Hydrogels</subject><subject>Linkages</subject><subject>Lysine</subject><subject>Phase transitions</subject><subject>Systems Chemistry</subject><subject>Transient Volume Phase Transition</subject><subject>Trypsin</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EoqWwMqJILCwp_okdeyxVSyshYCiskRvfQConLnEj1I1H4Bl5Ely1FImF6V5dnfvp00HonOA-wZhe67qEPsWUYk4oP0BdwimJWZqyw7AnjMWp5KSDTrxfBF5KLI5Rh_EkIUkqumh6U7pK542rnIW8tfD18TluwYKJZo2ufQn1Knp2tq0genzVHnbnVenqyBWRjiZr07gXsKfoqNDWw9lu9tDTeDQbTuK7h9vpcHAX5wlTPKZEpkooLgRXWMypJgawLKTSoRMlRhmh5pTknFFuUpKGmiY8Em0MM4Jw1kNX29xl495a8KusKn0O1uoaXOszKjiVgkm2QS__oAvXNnVoFyilJEuCrED1t1Sw4H0DRbZsyko364zgbCM520jO9pLDw8Uutp1XYPb4j9UAqC3wXlpY_xOXDe6no9_wbxx0hwU</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Nakamoto, Masahiko</creator><creator>Kitano, Shiro</creator><creator>Matsusaki, Michiya</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4294-9313</orcidid><orcidid>https://orcid.org/0000-0003-4570-5429</orcidid></search><sort><creationdate>20220815</creationdate><title>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</title><author>Nakamoto, Masahiko ; Kitano, Shiro ; Matsusaki, Michiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4395-21879695665906b2a1de08f89a54421d9d69b21c5325d717147d4391add3d6153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acrylic acid</topic><topic>Biomacromolecule-Responsive Hydrogel</topic><topic>Equilibrium conditions</topic><topic>Fuels</topic><topic>Hydrogel-Enzyme Composite</topic><topic>Hydrogels</topic><topic>Linkages</topic><topic>Lysine</topic><topic>Phase transitions</topic><topic>Systems Chemistry</topic><topic>Transient Volume Phase Transition</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamoto, Masahiko</creatorcontrib><creatorcontrib>Kitano, Shiro</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamoto, Masahiko</au><au>Kitano, Shiro</au><au>Matsusaki, Michiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-08-15</date><risdate>2022</risdate><volume>61</volume><issue>33</issue><spage>e202205125</spage><epage>n/a</epage><pages>e202205125-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition is reported. This hydrogel has the affinity and digestive capacity for a fuel α‐poly‐L‐lysine by incorporating acrylic acid and trypsin. The hydrogel captured fuel and transiently shrank owing to the construction of electrostatic cross‐linkages. This process was inherently connected with the digestion of these cross‐linkages and the release of oligo‐lysine as waste, which induced the reswelling of the hydrogel at equilibrium. The transient volume change of the hydrogel realized the fuel‐stimulated transient release of a payload. This study provides a strategy for engineering materials with biomacromolecule‐fueled dynamic functions under the out‐of‐equilibrium condition. Artificial materials that perform work under out‐of‐equilibrium conditions have attracted significant attention. A metabolic cycle‐inspired hydrogel which exhibits the biomacromolecule‐fueled transient volume phase transition was developed. The hydrogel was prepared by introducing two inherently connected functions that are affinity and digestive capacity for fuel. The system could also be exploited to realize the fuel‐stimulated transient release of the payload.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35441476</pmid><doi>10.1002/anie.202205125</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4294-9313</orcidid><orcidid>https://orcid.org/0000-0003-4570-5429</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-08, Vol.61 (33), p.e202205125-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2652863835
source Wiley Online Library Journals Frontfile Complete
subjects Acrylic acid
Biomacromolecule-Responsive Hydrogel
Equilibrium conditions
Fuels
Hydrogel-Enzyme Composite
Hydrogels
Linkages
Lysine
Phase transitions
Systems Chemistry
Transient Volume Phase Transition
Trypsin
title Biomacromolecule‐Fueled Transient Volume Phase Transition of a Hydrogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T04%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomacromolecule%E2%80%90Fueled%20Transient%20Volume%20Phase%20Transition%20of%20a%20Hydrogel&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Nakamoto,%20Masahiko&rft.date=2022-08-15&rft.volume=61&rft.issue=33&rft.spage=e202205125&rft.epage=n/a&rft.pages=e202205125-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205125&rft_dat=%3Cproquest_cross%3E2652863835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699834521&rft_id=info:pmid/35441476&rfr_iscdi=true