Supervised Learning in Multilayer Spiking Neural Networks With Spike Temporal Error Backpropagation
The brain-inspired spiking neural networks (SNNs) hold the advantages of lower power consumption and powerful computing capability. However, the lack of effective learning algorithms has obstructed the theoretical advance and applications of SNNs. The majority of the existing learning algorithms for...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-12, Vol.34 (12), p.10141-10153 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The brain-inspired spiking neural networks (SNNs) hold the advantages of lower power consumption and powerful computing capability. However, the lack of effective learning algorithms has obstructed the theoretical advance and applications of SNNs. The majority of the existing learning algorithms for SNNs are based on the synaptic weight adjustment. However, neuroscience findings confirm that synaptic delays can also be modulated to play an important role in the learning process. Here, we propose a gradient descent-based learning algorithm for synaptic delays to enhance the sequential learning performance of single spiking neuron. Moreover, we extend the proposed method to multilayer SNNs with spike temporal-based error backpropagation. In the proposed multilayer learning algorithm, information is encoded in the relative timing of individual neuronal spikes, and learning is performed based on the exact derivatives of the postsynaptic spike times with respect to presynaptic spike times. Experimental results on both synthetic and realistic datasets show significant improvements in learning efficiency and accuracy over the existing spike temporal-based learning algorithms. We also evaluate the proposed learning method in an SNN-based multimodal computational model for audiovisual pattern recognition, and it achieves better performance compared with its counterparts. |
---|---|
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3164930 |