Optimising the clustering performance of a self-organising logic neural network with topology-preserving capabilities

In this article, a self-organising logic neural network is studied. This network successfully clusters input patterns into classes characterised by a high similarity, while assigning these classes to the network nodes so that relationships existing in the pattern space are replicated on the network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 1994, Vol.15 (10), p.1019-1028
1. Verfasser: Tambouratzis, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a self-organising logic neural network is studied. This network successfully clusters input patterns into classes characterised by a high similarity, while assigning these classes to the network nodes so that relationships existing in the pattern space are replicated on the network structure. The network performance is optimised by (i) introducing a mechanism which ensures the efficient use of the network nodes for storage of pattern classes and by (ii) determining the training strategy which results in optimal topology-preservation characteristics.
ISSN:0167-8655
1872-7344
DOI:10.1016/0167-8655(94)90034-5