Microemitter-Based IR Spectroscopy and Imaging with Multilayer Graphene Thermal Emission
IR analyses such as Fourier transform infrared spectroscopy (FTIR) are widely used in many fields; however, the performance of FTIR is limited by the slow speed (∼10 Hz), large footprint (∼ millimeter), and glass bulb structure of IR light sources. Herein, we present IR spectroscopy and imaging base...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-04, Vol.22 (8), p.3236-3244 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IR analyses such as Fourier transform infrared spectroscopy (FTIR) are widely used in many fields; however, the performance of FTIR is limited by the slow speed (∼10 Hz), large footprint (∼ millimeter), and glass bulb structure of IR light sources. Herein, we present IR spectroscopy and imaging based on multilayer-graphene microemitters, which have distinct features: a planar structure, bright intensity, a small footprint (sub-μm2), and high modulation speed of >50 kHz. We developed an IR analysis system based on the multilayer-graphene microemitter and performed IR absorption spectroscopy. We show two-dimensional IR chemical imaging that visualizes the distribution of the chemical information. In addition, we present high-spatial-resolution IR imaging with a spatial resolution of ∼1 μm, far higher than the diffraction limit. The graphene-based IR spectroscopy and imaging can open new routes for IR applications in chemistry, material science, medicine, biology, electronics, and physics. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c04857 |