Ion Density-Dependent Dynamic Conductance Switching in Biomimetic Graphene Nanopores

Gating in ion transport is at the center of many vital living-substance transmission processes, and understanding how gating works at an atomic level is essential but intricate. However, our understanding and finite experimental findings of subcontinuum ion transport in subnanometer nanopores are st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-04, Vol.13 (16), p.3602-3608
Hauptverfasser: Chen, Fanfan, Athreya, Nagendra, Zhao, Chunxiao, Xiong, Mingye, Tan, Haojing, Leburton, Jean-Pierre, Feng, Jiandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gating in ion transport is at the center of many vital living-substance transmission processes, and understanding how gating works at an atomic level is essential but intricate. However, our understanding and finite experimental findings of subcontinuum ion transport in subnanometer nanopores are still limited, which is out of reach of the classical continuum nanofluidics. Moreover, the influence of ion density on subcontinuum ion transport is poorly understood. Here we report the ion density-dependent dynamic conductance switching process in biomimetic graphene nanopores and explain the phenomenon by a reversible ion absorption mechanism. Our molecular dynamics simulations demonstrate that the cations near the graphene nanopore can interact with the surface charges on the nanopore, thereby realizing the switching of high- and low-conductance states. This work has deepened the understanding of gating in ion transport.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c00715