BER improvement in SPAD-based photon-counting optical communication system by using automatic attenuation control technique

In order to overcome the saturation of a single-photon avalanche diode (SPAD)-based receiver and keep the output counts at optimum level automatically, a new, to the best of our knowledge, scheme using the automatic attenuation control (AAC) technique is proposed. In the scheme, an AAC module is app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2022-04, Vol.47 (8), p.1956-1959
Hauptverfasser: Wang, Chen, Wang, Jingyuan, Xu, Zhiyong, Li, Jianhua, Zhao, Jiyong, Qi, Ailin, Su, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to overcome the saturation of a single-photon avalanche diode (SPAD)-based receiver and keep the output counts at optimum level automatically, a new, to the best of our knowledge, scheme using the automatic attenuation control (AAC) technique is proposed. In the scheme, an AAC module is applied to attenuate excess incident photons. Furthermore, on the foundation of the bit error rate (BER) model of a photon-counting optical communication system, a reliable and efficient AAC algorithm is developed to compute the optimal attenuation factor. Based on the AAC algorithm, the optimal attenuation factors under different operation conditions are investigated. The results indicate that the incident optical intensity and signal-to-background ratio play an important role in determining the optimal attenuation factor. Moreover, at high incident optical intensity, the system BER utilized AAC module can be improved by 0.5 to 3 orders of magnitude. The AAC technique can effectively expand the dynamic range of the SPAD-based receiver.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.454370