Promoter Proximity Defines Mutation Window for VH and VΚ Genes Rearranged to Different J Genes
Somatic hypermutation induced by activation-induced deaminase (AID) occurs at high densities between the Ig V gene promoter and intronic enhancer, which encompasses DNA encoding the rearranged V gene exon and J intron. It has been proposed that proximity between the promoter and enhancer defines the...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2022-05, Vol.208 (9), p.2220-2226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Somatic hypermutation induced by activation-induced deaminase (AID) occurs at high densities between the Ig V gene promoter and intronic enhancer, which encompasses DNA encoding the rearranged V gene exon and J intron. It has been proposed that proximity between the promoter and enhancer defines the boundaries of mutation in V regions. However, depending on the J gene used, the distance between the promoter and enhancer is quite variable and may result in differential targeting around the V gene. To examine the effect of distance in mutation accumulation, we sequenced 320 clones containing different endogenous rearranged V genes in the IgH and Igκ loci from Peyer’s patch B cells of mice. Clones were grouped by their use of different J genes. Distances between the V gene and enhancer ranged from ∼2.3 kb of intron DNA for rearrangements using J1, ∼2.0 kb for rearrangements using J2, ∼1.6 kb for rearrangements using J3 (H) or 4 (κ), and 1.1 kb for rearrangements using J4 (H) or 5 (κ). Strikingly, >90% of intron mutations occurred within 1 kb downstream of the J gene for both H and κ clones, regardless of which J gene was used. Thus, there is no evidence that the intron sequence or enhancer plays a role in determining the extent of mutation. The results indicate that V region intron mutations are targeted by their proximity to the promoter, suggesting they result from AID interactions with RNA polymerase II over a 1-kb region. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.2101002 |