Understanding hydrazine oxidation electrocatalysis on undoped carbon

Carbons are ubiquitous electrocatalytic supports for various energy-related transformations, especially in fuel cells. Doped carbons such as Fe-N-C materials are particularly active towards the oxidation of hydrazine, an alternative fuel and hydrogen carrier. However, there is little discussion of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-05, Vol.24 (17), p.9897-993
Hauptverfasser: Burshtein, Tomer Y, Tamakuwala, Kesha, Sananis, Matan, Grinberg, Ilya, Samala, Nagaprasad Reddy, Eisenberg, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbons are ubiquitous electrocatalytic supports for various energy-related transformations, especially in fuel cells. Doped carbons such as Fe-N-C materials are particularly active towards the oxidation of hydrazine, an alternative fuel and hydrogen carrier. However, there is little discussion of the electrocatalytic role of the most abundant component - the carbon matrix - towards the hydrazine oxidation reaction (HzOR). We present a systematic investigation of undoped graphitic carbons towards the HzOR in alkaline electrolyte. Using highly oriented pyrolytic graphite electrodes, as well as graphite powders enriched in either basal planes or edge defects, we demonstrate that edge defects are the most active catalytic sites during hydrazine oxidation electrocatalysis. Theoretical DFT calculations support and explain the mechanism of HzOR on carbon edges, identifying unsaturated graphene armchair defects as the most likely active sites. Finally, these findings explain the 'double peak' voltammetric feature observed on many doped carbons during the HzOR. The catalytic role of the most abundant component in Fe-N-C electrocatalysts - the carbon matrix - is investigated towards the hydrazine oxidation reaction in alkaline media, revealing the central role of edge defects in the activity.
ISSN:1463-9076
1463-9084
DOI:10.1039/d2cp00213b