An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG Classification

As a kind of non-invasive, low-cost, and readily available brain examination, EEG has attached significance to the means of clinical diagnosis of epilepsy. However, the reading of long-term EEG records has brought a heavy burden to neurologists and experts. Therefore, automatic EEG classification fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.957-966
Hauptverfasser: Xin, Qi, Hu, Shaohai, Liu, Shuaiqi, Zhao, Ling, Zhang, Yu-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a kind of non-invasive, low-cost, and readily available brain examination, EEG has attached significance to the means of clinical diagnosis of epilepsy. However, the reading of long-term EEG records has brought a heavy burden to neurologists and experts. Therefore, automatic EEG classification for epileptic patients plays an essential role in epilepsy diagnosis and treatment. This paper proposes an Attention Mechanism-based Wavelet Convolution Neural Network for epilepsy EEG classification. Attention Mechanism-based Wavelet Convolution Neural Network firstly uses multi-scale wavelet analysis to decompose the input EEGs to obtain their components in different frequency bands. Then, these decomposed multi-scale EEGs are input into the Convolution Neural Network with an attention mechanism for further feature extraction and classification. The proposed algorithm achieves 98.89% triple classification accuracy on the Bonn EEG database and 99.70% binary classification accuracy on the Bern-Barcelona EEG database. Our experiments prove that the proposed algorithm achieves a state-of-the-art classification effect on epilepsy EEG.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2022.3166181