Delicately Tailored Ternary Phosphate Electrolyte Promotes Ultrastable Cycling of Na3V2(PO4)2F3‑Based Sodium Metal Batteries

High-voltage sodium metal batteries are a highly intriguing battery technology in view of their resource sustainability, cost efficiency, and ultrahigh energy density. However, developing a high-performance electrolyte, compatible with both high-voltage cathodes and highly reactive sodium metal anod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-04, Vol.14 (15), p.17444-17453
Hauptverfasser: Ma, Yinglei, Qin, Bingsheng, Du, Xiaofan, Xu, Gaojie, Wang, Dingming, Wang, Jia, Zhang, Jianjun, Zhao, Jingwen, Su, Zhi, Cui, Guanglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-voltage sodium metal batteries are a highly intriguing battery technology in view of their resource sustainability, cost efficiency, and ultrahigh energy density. However, developing a high-performance electrolyte, compatible with both high-voltage cathodes and highly reactive sodium metal anodes, is extremely challenging. In this work, we delicately formulate a ternary phosphate electrolyte, composing of a cost-effective sodium bis­(trifluoromethane sulfonyl) imide salt, a nonflammable triethyl phosphate (TEP) solvent, and a fluoroethylene carbonate (FEC) co-solvent. By rationally tailoring the TEP/FEC ratio, the ternary phosphate electrolyte displays a well-balanced performance, not only enabling highly efficient sodium deposition (an average Coulombic efficiency of 95.7% for Na//Cu cells) but also inheriting the intrinsic anodic stability (≥4.5 V vs Na+/Na) and nonflammability of phosphates. As a consequence, high-voltage Na3V2(PO4)2F3 cathode-based sodium metal cells (Na3V2(PO4)2F3//Na) deliver remarkable cyclic stability (97.9% capacity retention after 300 cycles), which is among the best for Na3V2(PO4)2F3-based batteries. This work may guide the electrolyte design principles and is highly enlightening in developing high energy density sodium-based batteries.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c01894