Tailoring solid-state single-photon sources with stimulated emissions
The coherent interaction of electromagnetic fields with solid-state two-level systems can yield deterministic quantum light sources for photonic quantum technologies. To date, the performance of semiconductor single-photon sources based on three-level systems is limited mainly due to a lack of high...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2022-05, Vol.17 (5), p.470-476 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The coherent interaction of electromagnetic fields with solid-state two-level systems can yield deterministic quantum light sources for photonic quantum technologies. To date, the performance of semiconductor single-photon sources based on three-level systems is limited mainly due to a lack of high photon indistinguishability. Here we tailor the cavity-enhanced spontaneous emission from a ladder-type three-level system in a single epitaxial quantum dot through stimulated emission. After populating the biexciton (XX) of the quantum dot through two-photon resonant excitation, we use another laser pulse to selectively depopulate the XX state into an exciton (X) state with a predefined polarization. The stimulated XX–X emission modifies the X decay dynamics and improves the characteristics of a polarized single-photon source, such as a source brightness of 0.030(2), a single-photon purity of 0.998(1) and an indistinguishability of 0.926(4). Our method can be readily applied to existing quantum dot single-photon sources and expands the capabilities of three-level systems for advanced quantum photonic functionalities.
Deterministic single-photon sources are a key building block for photonic quantum technologies. Stimulated emission now helps tailoring spontaneous emission from a ladder-type three-level system in a single epitaxial quantum dot for bright polarized sources with a high photon purity and indistinguishability. |
---|---|
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/s41565-022-01092-6 |