Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation

[Display omitted] The emerging of solar-driven interfacial evaporation provides new opportunities to alleviate the shortage of fresh water resource. Nevertheless, in practical solar desalination, salt precipitation will lead to the decrease of evaporation rate due to reduced light absorption and blo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-08, Vol.619, p.322-330
Hauptverfasser: Gao, Can, Zhu, Jingjing, Li, Jiecong, Zhou, Buguang, Liu, Xiaojing, Chen, Yue, Zhang, Zhi, Guo, Jiansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The emerging of solar-driven interfacial evaporation provides new opportunities to alleviate the shortage of fresh water resource. Nevertheless, in practical solar desalination, salt precipitation will lead to the decrease of evaporation rate due to reduced light absorption and blocked evaporation channels of evaporator. It still remains a challenge to eliminate salt accumulation and simultaneously maintain high-efficient evaporation. In this work, a solar evaporator was prepared based on reduced graphene oxide and chitosan coated honeycomb-structured fabric (rCHF). The rCHF showed a high light absorbance of 97.2% due to enhanced light trapping of the honeycomb structure and ultra-low thermal conductivity of 0.044 W m−1 K−1. Furthermore, the temperature gradient generated inside the honeycomb unit can induce the Marangoni effect, which led to the site-specific salt crystallization on rCHF in seawater evaporation. As a result, the rCHF realized an excellent solar evaporation rate of 2.02 kg m-2h−1 under one sun irradiation (1 kW m−2). The site-specific salt crystallization on the surface of rCHF ensured stable evaporation even in 20% brine, and the isolated salt can be removed by natural dissolution owing to the excellent hydrophilicity of rCHF. This work provides a new perspective for the design of solar evaporator for practical solar seawater desalination.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2022.03.122