Tolerance of juvenile Peruvian rock seabass (Paralabrax humeralis Valenciennes, 1828) and Peruvian grunt (Anisotremus scapularis Tschudi, 1846) to low‐oxygen conditions

Hypoxia is currently one of the greatest threats to coastal ecosystems worldwide, generating massive mortality of marine organisms, loss of benthic ecosystems and a decrease in fishery production. We evaluated and compared the tolerance to hypoxia of two species from different habitats of the Peruvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fish biology 2022-06, Vol.100 (6), p.1497-1509
Hauptverfasser: Montero‐Taboada, Rebeca, Sotil, Giovanna, Dionicio‐Acedo, Jhon, Rosado‐Salazar, Maryandrea, Aguirre‐Velarde, Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoxia is currently one of the greatest threats to coastal ecosystems worldwide, generating massive mortality of marine organisms, loss of benthic ecosystems and a decrease in fishery production. We evaluated and compared the tolerance to hypoxia of two species from different habitats of the Peruvian coast, the Peruvian rock seabass Paralabrax humeralis and the Peruvian grunt Anisotremus scapularis. The effect of hypoxia was measured as a function of the exposure time (progressive and chronic) on the behavioural and physiological responses of the two species, as well as on the enzymatic activity associated with the oxidative stress response of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and alkaline phosphatase (AKP). The ventilatory frequency was measured at two different temperatures (16 and 22°C) under progressive hypoxia conditions to determine the ventilatory critical point (Vcp). A. scapularis showed a higher Vcp than P. humeralis, which was positively affected by temperature. The median lethal time of A. scapularis was 36 min at 60% of oxygen saturation, while P. humeralis showed no mortality after 31 days of exposure at 5% oxygen saturation. Different enzymatic activity (P 
ISSN:0022-1112
1095-8649
DOI:10.1111/jfb.15060