Biomarkers as predictors of treatment response to tricyclic antidepressants in major depressive disorder: A systematic review
Tricyclic antidepressants (TCAs) are frequently prescribed in case of non-response to first-line antidepressants in Major Depressive Disorder (MDD). Treatment of MDD often entails a trial-and-error process of finding a suitable antidepressant and its appropriate dose. Nowadays, a shift is seen towar...
Gespeichert in:
Veröffentlicht in: | Journal of psychiatric research 2022-06, Vol.150, p.202-213 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tricyclic antidepressants (TCAs) are frequently prescribed in case of non-response to first-line antidepressants in Major Depressive Disorder (MDD). Treatment of MDD often entails a trial-and-error process of finding a suitable antidepressant and its appropriate dose. Nowadays, a shift is seen towards a more personalized treatment strategy in MDD to increase treatment efficacy. One of these strategies involves the use of biomarkers for the prediction of antidepressant treatment response. We aimed to summarize biomarkers for prediction of TCA specific (i.e. per agent, not for the TCA as a drug class) treatment response in unipolar nonpsychotic MDD. We performed a systematic search in PubMed and MEDLINE. After full-text screening, 36 papers were included. Seven genetic biomarkers were identified for nortriptyline treatment response. For desipramine, we identified two biomarkers; one genetic and one nongenetic. Three nongenetic biomarkers were identified for imipramine. None of these biomarkers were replicated. Quality assessment demonstrated that biomarker studies vary in endpoint definitions and frequently lack power calculations. None of the biomarkers can be confirmed as a predictor for TCA treatment response. Despite the necessity for TCA treatment optimization, biomarker studies reporting drug-specific results for TCAs are limited and adequate replication studies are lacking. Moreover, biomarker studies generally use small sample sizes. To move forward, larger cohorts, pooled data or biomarkers combined with other clinical characteristics should be used to improve predictive power. |
---|---|
ISSN: | 0022-3956 1879-1379 |
DOI: | 10.1016/j.jpsychires.2022.03.057 |