Optical detection of atherosclerosis at molecular level by optical coherence tomography: An in vitro study
There is an urgent need for contrast agents to detect the first inflammation stage of atherosclerosis by cardiovascular optical coherence tomography (CV-OCT), the imaging technique with the highest spatial resolution and sensitivity of those used during coronary interventions. Gold nanoshells (GNSs)...
Gespeichert in:
Veröffentlicht in: | Nanomedicine 2022-07, Vol.43, p.102556-102556, Article 102556 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is an urgent need for contrast agents to detect the first inflammation stage of atherosclerosis by cardiovascular optical coherence tomography (CV-OCT), the imaging technique with the highest spatial resolution and sensitivity of those used during coronary interventions. Gold nanoshells (GNSs) provide the strongest signal by CV-OCT. GNSs are functionalized with the cLABL peptide that binds specifically to the ICAM-1 molecule upregulated in the first stage of atherosclerosis. Dark field microscopy and CV-OCT are used to evaluate the specific adhesion of these functionalized GNSs to activated endothelial cells. This adhesion is investigated under static and dynamic conditions, for shear stresses comparable to those of physiological conditions. An increase in the scattering signal given by the functionalized GNSs attached to activated cells is observed compared to non-activated cells. Thus, cLABL-functionalized GNSs behave as excellent contrast agents for CV-OCT and promise a novel strategy for clinical molecular imaging of atherosclerosis.
There is an urgent need to provide molecular imaging of the first inflammation stage of atherosclerosis by optical coherence tomography. Gold nanoshells behave as excellent contrast agents for this imaging technique. Functionalization with a cLABL peptide provides gold nanoshells with ICAM-1 targeting capabilities, making inflammation detection possible, even in dynamic conditions. [Display omitted]
•The possibility of performing molecular imaging of inflammation by OCT is evaluated.•ICAM-1-targeting gold nanoshells are used as contrast agents.•Specific adhesion of gold nanoshells to ICAM-1 is found after static incubation.•Targeting is also achieved under dynamic (circulating) conditions. |
---|---|
ISSN: | 1549-9634 1549-9642 |
DOI: | 10.1016/j.nano.2022.102556 |