Synthesis of hybrid biosorbent based on 1,2-cyclohexylenedinitrilotetraacetic acid modified crosslinked chitosan and organo-functionalized calcium alginate for adsorptive removal of Cu(II)
The present study is based on the synthesis of a novel hybrid biosorbent using 1,2-cyclohexylenedinitrilotetraacetic acid modified crosslinked chitosan and amino-thiocarbamate moiety functionalized sodium alginate (CDTA-CS/TSC-CA). The fabricated sorbent was employed to investigate the efficient rec...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-06, Vol.209 (Pt A), p.132-143 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study is based on the synthesis of a novel hybrid biosorbent using 1,2-cyclohexylenedinitrilotetraacetic acid modified crosslinked chitosan and amino-thiocarbamate moiety functionalized sodium alginate (CDTA-CS/TSC-CA). The fabricated sorbent was employed to investigate the efficient recovery of Cu(II) from aqueous media. CDTA-CS/TSC-CA was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Analysis confirmed the successful modification of both biopolymers and subsequent loading of Cu(II) ions. CDTA-CS/TSC-CA was casted in the form of hydrogel beads having different CDTA-CS to TSC-CA mass ratios i.e., 10.0–40.0% by mass. The hydrogel beads 4CDTA-CS/TSC-CA with CDTA-CS/TSC-CA mass ratio of 40.0% was found most effective for copper sorption. Equilibrium sorption results showed that initial concentration of copper, medium pH, contact time, sorbent dosage and temperature influenced the sorption capacity (qe). Rate of sorption data was interpreted using different kinetic models and found best fitted with pseudo second order rate expression (R2 ≈ 0.99), illustrating that the rate determining step includes the electron density transfer from sorbent coordination sites to central copper ions. Crank's RIDE equation and Elovich chemisorption model (ECM) revealed the presence of two sorption phases, initially rapid sorption followed by comparatively a slow uptake. Equilibrium sorption data was well depicted by Langmuir model and maximum monolayer adsorption capacity (qm) was computed as 276.53 mg·g−1 at 298 K. Standard Gibbs free energy change, ∆G° (−19.99, −20.18 and −20.36 kJ/ mol), standard enthalpy change, ∆H° (−8.95 kJmol) and standard entropy change, ∆S° (0.04 kJ/mol K−1) values suggested that the adsorption process is spontaneous and exothermic. Hence, 4CDTA-CS/TSC-CA was found efficient biosorbent for copper removal from its dilute effluents. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.04.012 |