Potentially toxic elements have adverse effects on moss communities in the manganese mines of Southern China

This study investigated the distribution of moss species, physiological parameters (superoxide dismutase, peroxide, catalase, and total chlorophyll), and concentrations of potentially toxic elements (Mn, Cr, Zn, Cu, Pb, and Cd) in moss communities and topsoil at the Huayuan manganese mine, Xiangjian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2022-07, Vol.305, p.119255-119255, Article 119255
Hauptverfasser: Sheng, Xu, Zhaohui, Zhang, Zhihui, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the distribution of moss species, physiological parameters (superoxide dismutase, peroxide, catalase, and total chlorophyll), and concentrations of potentially toxic elements (Mn, Cr, Zn, Cu, Pb, and Cd) in moss communities and topsoil at the Huayuan manganese mine, Xiangjiang manganese mine, and Nancha manganese mine (Southern China). Partial least squares path modeling (PLS-PM) was then performed to determine the relationship between the indicators. Cd, Mn, and Zn were the main topsoil pollutants, followed by Pb, Cr, and Cu. A total of 73 moss species, comprising 31 genera from 17 families, and 8 community functional groups were identified. The most dominant families were Pottiaceae (30.14%) and Bryaceae (21.92%). PLS-PM revealed that increasing topsoil Mn, Cr, Zn, Cu, Pb, and Cd significantly reduced species diversity and functional diversity. These potentially toxic elements in the topsoil impeded vegetation growth by deteriorating soil conditions and subsequently altering the microenvironment of the moss communities. The community-weighted means demonstrated that functional traits of turfs and warty leaves were the adaptation of the moss communities to an increasingly dry and exposed microenvironment. Moss species with curly and narrow leaves were used to reduce contact with particulate pollutants. PLS-PM also indicated that Mn, Cr, Pb, and Cd may have a detrimental effect on superoxide dismutase, peroxide, catalase, and total chlorophyll, although further validation studies are needed. [Display omitted] •Cd, Mn, and Zn are the main pollutants, followed by Pb, Cr, and Cu.•Toxic elements affect the microenvironment of mosses by impeding vegetation growth.•Turfs and warty leaves adapt mosses to the dry and exposed microenvironment.•Curly and narrow leaves help to minimize interaction with pollutants.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2022.119255